全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超低硬度橡胶隔震支座水平力学性能相关性试验研究

DOI: 10.13197/j.eeev.2014.05.204.shency.026, PP. 204-216

Keywords: 橡胶隔震支座,超低硬度,LNR,LRB,水平力学性能,相关性试验

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文目的是研究G值约为0.196MPa的超低硬度天然橡胶隔震支座(LNR)和铅芯橡胶隔震支座(LRB)的水平基本力学性能的各种相关性能变化规律。采用反复加载的试验方法研究了LNR及LRB支座剪切性能的水平剪应变相关性、压应力相关性和水平加载频率相关性、温度相关性、反复加载次数相关性、老化相关性、水平极限应变相关性。通过试验研究,分析了各种相关性因素对支座水平性能的影响,给出了主要相关性变化规律的拟合近似公式,并和有关文献的结果进行了比较。从各种相关性对支座水平性能影响程度来看,水平剪应变、竖向压应力、温度、频率对其有一定程度影响,而老化、反复加载次数、大变形对其影响有限。试验结果还表明,部分文献夸大了应变在低应变阶段对LNR水平刚度的影响,低估了其对LRB屈服后刚度和屈服强度在小应变和大应变阶段的影响。

References

[1]  周福霖. 工程结构减震控制[M]. 北京:地震出版社,1997: 29-30. ZHOU Fulin. Earthquake energy absorbing control on engineering structure[M]. Beijing: Seismological Press, 1997:29-30. (in Chinese)
[2]  Pocanschia A, Phocasb M C. Earthquake isolator with progressive nonlinear deformability[J]. Engineering Structures, 2007, 29:2586-2592.
[3]  Gordon P W, Andrew S. Whittaker. Vertical earthquake loads on seismic isolation systems in bridges[J]. Journal of Structural Engineering, 2008, 134(11):1696-1704.
[4]  Ioannis V K, Michael C C. Principles of scaling and similarity for testing of lead-rubber bearings[J]. Earthquake Engineering and Structural Dynamics, 2010, 39:1551-1568.
[5]  Ioannis V K, Michael C C, Andrew S W. Modeling strength degradation in lead-rubber bearings under earthquake shaking[J]. Earthquake Engineering And Structural Dynamics. 2010; 39:1533-1549.
[6]  YANG Qiaorong, LIU Wenguang, He Wenfu, et al. Tensile stiffness and deformation model of rubber isolators in tension and tension-shear states[J]. Journal of Engineering Mechanics, 2010, Vol. 136(4):429-437.
[7]  WU Bo, HAN Liwei, ZHOU Fulin, et al. Experimental study on fire resistance of building seismic rubber bearings[J]. Journal of Structural Engineering, 2011,Vol. 137(12):1593-1602.
[8]  Milani G., Milani F. Stretch-stress behavior of elastomeric seismic lsolators with different rubber materials: numerical insight[J]. Journal of Engineering Mechanics, 2012, Vol. 138(5):416-429.
[9]  Jared W, Gordon P W. Stability of elastomeric and lead-rubber seismic isolation bearings[J]. Journal of Structural Engineering, 2012, Vol. 138(2):215-223.
[10]  Donatello C, Giuseppe P. Critical load of slender elastomeric seismic isolators: an experimental perspective[J].Engineering Structures, 2012, 40:198-204.
[11]  HE Wenfu, LIU Wenguang, YANG Qiaorong, et al. Nonlinear rotation and shear stiffness theory and experiment research on rubber isolators[J]. Journal of Engineering Mechanics, 2012, Vol. 138(5): 441-449.
[12]  ISO 22672-1 2005. Elastomeric seismic-protection isolators―Part 1:Test methods[S]. Switzerland, 2005.
[13]  Mashahiko H., Shin O. Response control and seismic isolation of buildings[M]. London and New York: Taylor & Francis. 2006.
[14]  ISO 22672-3 2005. Elastomeric seismic-protection isolators―Part 3:Applications for buildings―Specifications[S]. Switzerland, 2005.
[15]  GB 20688. 3 2006橡胶支座: 第3部分: 建筑隔震橡胶支座[S]. Beijing, 2006. GB 20688.3 2006 Rubber bearings: part 3: Elastometric Seismic Protection Isolators for Buildings[S]. Beijing,2006.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133