Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA) composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA). The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM) investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix. 1. Introduction With the increasing of environmental protection consciousness, natural fibers as a group of environmental friendly reinforcements are in considerable demand in composites [1, 2]. Natural fibers such as flax, hemp, sisal, nettle and jute were the most common reinforced elements [2, 3]. Of course, natural fiber reinforced degradable polymers composite is likely more ecofriendly because that the reinforcement and the matrix (e.g., polylactide (PLA)) are readily biodegradable and such biocomposites are sometimes termed “green composites” [4, 5]. Natural fibers as reinforcement are familiar. However, there is also a major drawback associated with its application for reinforcement of polymeric matrices. The presence of hydroxyl and other polar groups in natural fibers constituents makes them exhibit high hydrophilic nature, which leads to incompatibility and poor wettability in a hydrophobic polymer matrix, and weak bonding in the fiber/matrix interface [6]. Herewith, there are many problems in dealing with the interface of natural fiber and polylactide. Several approaches have been studied, such as surface modification of cellulose (e.g., esterification of cellulose and graft copolymerization onto cellulose substrates) and the use of some compatibilizers (e.g., maleated polylactide and isocyanate [7–11]). Nevertheless, only a limited number of studies had achieved good results. And there is no commercial sale of such interfacial compatibilizers in the market. Among the various natural fibers, sisal fiber is fairly coarse and inflexible. It possesses moderately high specific strength and stiffness, durability, ability to stretch, and resistance to
References
[1]
A. K. Bledzki, W. Zhang, and A. Chate, “Natural-fibre-reinforced polyurethane microfoams,” Composites Science and Technology, vol. 61, no. 16, pp. 2405–2411, 2001.
[2]
A. Ashori, “Wood—plastic composites as promising green-composites for automotive industries!,” Bioresource Technology, vol. 99, no. 11, pp. 4661–4667, 2008.
[3]
J. Ganster and H.-P. Fink, “Novel cellulose fibre reinforced thermoplastic materials,” Cellulose, vol. 13, no. 3, pp. 271–280, 2006.
[4]
M. S. Huda, A. K. Mohanty, L. T. Drzal, E. Schut, and M. Misra, “‘Green’ composites from recycled cellulose and poly(lactic acid): physico-mechanical and morphological properties evaluation,” Journal of Materials Science, vol. 40, no. 16, pp. 4221–4229, 2005.
[5]
A. Iwatake, M. Nogi, and H. Yano, “Cellulose nanofiber-reinforced polylactic acid,” Composites Science and Technology, vol. 68, no. 9, pp. 2103–2106, 2008.
[6]
X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review,” Journal of Polymers and the Environment, vol. 15, no. 1, pp. 25–33, 2007.
[7]
H. L?nnberg, Q. Zhou, H. Brumer III, T. T. Teeri, E. Malmstr?m, and A. Hult, “Grafting of cellulose fibers with poly( -caprolactone) and poly(L-lactic acid) via ring-opening polymerization,” Biomacromolecules, vol. 7, no. 7, pp. 2178–2185, 2006.
[8]
M. Takatani, K. Ikeda, K. Sakamoto, and T. Okamoto, “Cellulose esters as compatibilizers in wood/poly(lactic acid) composite,” Journal of Wood Science, vol. 54, no. 1, pp. 54–61, 2008.
[9]
N. Teramoto, K. Urata, K. Ozawa, and M. Shibata, “Biodegradation of aliphatic polyester composites reinforced by abaca fiber,” Polymer Degradation and Stability, vol. 86, no. 3, pp. 401–409, 2004.
[10]
D. Plackett, “Maleated polylactide as an interfacial compatibilizer in biocomposites,” Journal of Polymers and the Environment, vol. 12, no. 3, pp. 131–138, 2004.
[11]
S. H. Lee and S. Wang, “Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent,” Composites Part A, vol. 37, no. 1, pp. 80–91, 2006.
[12]
S. M. Sapuan, M. Harimi, and M. A. Maleque, “Mechanical properties of epoxy/coconut shell filler particle composites,” Arabian Journal for Science and Engineering, vol. 28, no. 2B, pp. 171–181, 2003.
[13]
P. V. Joseph, K. Joseph, and S. Thomas, “Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites,” Composites Science and Technology, vol. 59, no. 11, pp. 1625–1640, 1999.
[14]
F. A. Silva, D. Zhu, B. Mobasher, C. Soranakom, and R. D. Toledo Filho, “High speed tensile behavior of sisal fiber cement composites,” Materials Science and Engineering A, vol. 527, no. 3, pp. 544–552, 2010.
[15]
J. T. Kim and A. N. Netravali, “Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites,” Composites Part A, vol. 41, no. 9, pp. 1245–1252, 2010.
[16]
I. Singh, P. K. Bajpai, D. Malik, A. K. Sharma, and P. Kumar, “Feasibility Study on Microwave Joining of ‘green composites’,” Akademeia, vol. 1, no. 1, pp. 1–6, 2011.
[17]
Z. Li, X. Zhou, and C. Pei, “Synthesis and characterization of mps-g-pla copolymer and its application in surface modification of bacterial cellulose,” International Journal of Polymer Analysis and Characterization, vol. 15, no. 4, pp. 199–209, 2010.
[18]
Z. Q. Li, X. D. Zhou, and C. H. Pei, “Synthesis of PLA-co-PGMA copolymer and its application in the surface modification of bacterial cellulose,” International Journal of Polymeric Materials, vol. 59, no. 9, pp. 725–737, 2010.
[19]
M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, “The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites,” Composites Science and Technology, vol. 61, no. 10, pp. 1437–1447, 2001.
[20]
M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites,” Composite Interfaces, vol. 15, no. 2-3, pp. 169–191, 2008.
[21]
M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers,” Composites Science and Technology, vol. 68, no. 2, pp. 424–432, 2008.
[22]
P. A. Sreekumar, R. Saiah, J. M. Saiter, et al., “Effect of chemical treatment on dynamic mechanical properties of sisal fiber-reinforced polyester composites fabricated by resin transfer molding,” Composite Interfaces, vol. 15, no. 2-3, pp. 263–279, 2008.
[23]
I. C. Finegan and R. F. Gibson, “Recent research on enhancement of damping in polymer composites,” Composite Structures, vol. 44, no. 2-3, pp. 89–98, 1999.