全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

埋深对黏性土动剪切模量和阻尼比影响试验研究

DOI: 10.13197/j.eeev.2015.06.136.tanhm.019, PP. 136-143

Keywords: 黏性土,土动力特性,共振柱试验,土样埋深,地震反应分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

动剪切模量和阻尼比是两个重要的土动力学参数,在场地地震反应分析中是不可或缺的基础内容。本文通过对取自江苏地区的397个原状黏性土样进行自振柱试验,深入研究了土的埋藏深度对各类土的最大剪切模量、动剪切模量比和阻尼比与剪应变的关系影响,结果发现各类土的最大剪切模量均随埋深的增大而增大,二者在统计意义上呈指数关系;埋深对黏性土的动剪切模量比和阻尼比与剪应变关系曲线也有较明显的影响,且这种影响的程度随埋深的增大而减小;动剪切模量比和阻尼比关系曲线受埋深变化影响的敏感性因土类的不同而有明显差异,从本次结果来看,埋深对粉质黏土与粉砂互层的影响最大,对淤泥质土和粉土的影响次之,对黏土和粉质黏土的动力特性影响最小,且每种土动剪切模量与剪应变的关系和阻尼比与剪应变的关系受埋深的影响表现出了不同的变化趋势。此外建立了土层模型进行了地震反应分析,验证了考虑埋深对土动力学参数影响的必要性,在工程上具有一定的参考意义。

References

[1]  高志兵,高玉峰,谭慧明.饱和黏性土最大动剪切模量的室内和原位试验对比研究[J].岩土工程学报, 2010, 32(5):731-735. GAO Zhibing, GAO Yufeng, TAN Huiming. Lab and in-situ tests on maximum dynamic shear modulus of saturated clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5):731-735.(in Chinese)
[2]  史丙新,周荣军.四川盆地场地土动力学参数统计研究[J].四川地震, 2014, 3:1-5. SHI Bingxin, ZHOU Rongjun. Research on dynamic parameters of site soil in Sichuan basin[J]. Earthquake Research In Sichuan, 2014, 3:1-5.(in Chinese)
[3]  张小平,牛雪,赵安生,等.大连地区场地土动力学参数初步研究[J].中国地震, 2011, 27(3):280-289. ZHANG Xiaoping, NIU Xue, ZHAO Ansheng, et al. Research on dynamic parameters of soil site in Dalian area[J]. Earthquake Research in China, 2011, 27(3):280-289.(in Chinese)
[4]  白玉,余湘娟,高磊.南京地区粉质黏土动剪切模量与阻尼比试验研究[J].水利与建筑工程学报, 2013, 11(1):26-30+96. BAI Yu, YU Xiangjuan, GAO Lei. Experimental study on dynamic shear modulus and damping ratio of silty clay soil in Nanjing[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(1):26-30+96.(in Chinese)
[5]  袁晓铭,孙锐,孙静,等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程与工程振动, 2000, 20(4):133-139. YUAN Xiaoming, SUN Rui, SUN Jing, et al. Laboratory experimental study on dynamic shear modulus raito and damping ratio of soils[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(4):133-139.(in Chinese)
[6]  蔡辉腾,金星.福州市区粉质黏土动剪切模量与阻尼比试验研究[J].土木工程学报, 2011, 44:110-113. CAI Huiteng, JIN Xing.Testing study on dynamic shear modulus and damping ratio of silty clay in Fuzhou downtown area[J]. China Civil Engineering Journal, 2011, 44:110-113.(in Chinese)
[7]  施春花,吕悦军,彭艳菊,等.北京地区粉质黏土土动力学参数的统计分析[J].震灾防御技术,2009,4(1):69-79. SHI Chunhua, LV Yuejun, PENG Yanju, et al. Statistical analysis of dynamic parameters of silty clay in Beijing area[J]. Technology for Earthquake Disaster Prevention, 2009, 4(1):69-79.(in Chinese)
[8]  蒋其峰,彭艳菊,荣棉水,等.渤海海域粉质黏土动力学参数的统计分析[J].震灾防御技术, 2014, 9(2):252-262. JIANG Qieng, PENG Yanju, RONG Mianshui, et al. Statistical analysis of dynamic parameters of silty clay in the Bohai sea[J]. Technology for Earthquake Disaster Prevention, 2014, 9(2):252-262.(in Chinese)
[9]  Hardin B O, Drnevich V P. Shear modulus and damping of soils:measurement and parameter effects[J]. Journal of Soil Mechanics and Foundation Division, 1972a, 98(SM6):603-624.
[10]  谢定义.土动力学[M].北京:高等教育出版社, 2011:279-300. XIE Dingyi. Soil dynamics[M]. Beijing:Higher Education Press, 2011:279-300.(in Chinese)
[11]  Martin P P, Seed H B. One-dimensional dynamic ground response analyses[J]. Journal of the Geotechnical Engineering Division, 1982, 108(7):935-952.
[12]  Isao Ishibashi, Zhang Xinjian. Unified dynamic shear moduli and damping ratios of sand and clay[J]. Soils and Foundation, 1993, 33(1):182-191.
[13]  Roy H. Borden. Dynamic properties of piedmont residual soils[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(10):813-821.
[14]  Zhang Jianfeng, Ronald D. Andrus, C Hsein Juang. Nomalized shear modulus and material damping ratio relationships[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(4):453-464.
[15]  陈国兴,庄海洋.基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J].岩土工程学报, 2005, 27(8):860-864. CHEN Guoxing, ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8):860-864.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133