全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Polymeric Scaffolds in Tissue Engineering Application: A Review

DOI: 10.1155/2011/290602

Full-Text   Cite this paper   Add to My Lib

Abstract:

Current strategies of regenerative medicine are focused on the restoration of pathologically altered tissue architectures by transplantation of cells in combination with supportive scaffolds and biomolecules. In recent years, considerable interest has been given to biologically active scaffolds which are based on similar analogs of the extracellular matrix that have induced synthesis of tissues and organs. To restore function or regenerate tissue, a scaffold is necessary that will act as a temporary matrix for cell proliferation and extracellular matrix deposition, with subsequent ingrowth until the tissues are totally restored or regenerated. Scaffolds have been used for tissue engineering such as bone, cartilage, ligament, skin, vascular tissues, neural tissues, and skeletal muscle and as vehicle for the controlled delivery of drugs, proteins, and DNA. Various technologies come together to construct porous scaffolds to regenerate the tissues/organs and also for controlled and targeted release of bioactive agents in tissue engineering applications. In this paper, an overview of the different types of scaffolds with their material properties is discussed. The fabrication technologies for tissue engineering scaffolds, including the basic and conventional techniques to the more recent ones, are tabulated. 1. Introduction The field of tissue engineering has advanced dramatically in the last 10 years, offering the potential for regenerating almost every tissue and organ of the human body. Tissue engineering and the related discipline of regenerative medicine remain a flourishing area of research with potential new treatments for many more disease states. The advances involve researchers in a multitude of disciplines, including cell biology, biomaterials science, imaging, and characterization of surfaces and cell material interactions. Tissue engineering aims to restore, maintain, or improve tissue functions that are defective or have been lost by different pathological conditions, either by developing biological substitutes or by reconstructing tissues. The general strategies adopted by tissue engineering can be classified into three groups [1]: (i) Implantation of isolated cells or cell substitutes into the organism, (ii) delivering of tissue-inducing substances (such as growth factors), and (iii) placing cells on or within different matrices. The last of these strategies is more frequently associated with the concept of tissue engineering, that is, the use of living cells seeded on a natural or synthetic extracellular substrate to create implantable

References

[1]  R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993.
[2]  R. M. Nerem, “Tissue engineering in the USA,” Medical and Biological Engineering and Computing, vol. 30, no. 4, pp. CE8–CE12, 1992.
[3]  R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature, vol. 428, no. 6982, pp. 487–492, 2004.
[4]  J. R. Fuchs, B. A. Nasseri, and J. P. Vacanti, “Tissue engineering: a 21st century solution to surgical reconstruction,” Annals of Thoracic Surgery, vol. 72, no. 2, pp. 577–591, 2001.
[5]  I. V. Yannas, J. F. Burke, C. Huang, and P. L. Gordon, “Suppression of in vivo degradability and of immunogenicity of collagen by reaction with glycosaminoglycans,” Polymer Preprints, vol. 16, pp. 209–214, 1975.
[6]  I. V. Yannas, J. F. Burke, P. L. Gordon, and C. Huang, “Multilayer membrane useful as synthetic skin,” US patent 4060081, 1977.
[7]  I. V. Yannas and J. F. Burke, “Design of an artificial skin. I. Basic design principles,” Journal of Biomedical Materials Research, vol. 14, no. 1, pp. 65–81, 1980.
[8]  I. V. Yannas, J. F. Burke, M. Warpehoski et al., “Prompt, long-term functional replacement of skin,” Transactions—American Society for Artificial Internal Organs, vol. 27, pp. 19–23, 1981.
[9]  I. V. Yannas, J. F. Burke, D. P. Orgill, and E. M. Skrabut, “Regeneration of skin following closure of deep wounds with a biodegradable template,” Transactions of the Society For Biomaterials, vol. 5, pp. 24–29, 1982.
[10]  J. F. Burke, O. V. Yannas, and W. C. Quinby Jr., “Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury,” Annals of Surgery, vol. 194, no. 4, pp. 413–427, 1981.
[11]  I. V. Yannas, D. P. Orgill, J. Silver, T. V. Norregaard, N. T. Zervas, and W. C. Schoene, “Polymeric template facilitates regeneration of sciatic nerves across 15-mm gap,” Transactions of the Society For Biomaterials, vol. 8, p. 146, 1985.
[12]  W. C. Hsu, M. H. Spilker, I. V. Yannas, and P. A. D. Rubin, “Inhibition of conjunctival scarring and contraction by a porous collagen-glycosaminoglycan implant,” Investigative Ophthalmology and Visual Science, vol. 41, no. 9, pp. 2404–2411, 2000.
[13]  S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, “Biomedical applications of polymer-composite materials: a review,” Composites Science and Technology, vol. 61, no. 9, pp. 1189–1224, 2001.
[14]  M. Vert, “Aliphatic polyesters: great degradable polymers that cannot do everything,” Biomacromolecules, vol. 6, no. 2, pp. 538–546, 2005.
[15]  E. Piskin, “Biodegradable polymers as biomaterials,” Journal of Biomaterials Science Polymer Edition, vol. 6, pp. 775–795, 1994.
[16]  Y. Ji, K. Ghosh, X. Z. Shu et al., “Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds,” Biomaterials, vol. 27, no. 20, pp. 3782–3792, 2006.
[17]  W. H. Eaglstein and V. Falanga, “Tissue engineering and the development of Apligraf a human skin equivalent,” Advances in Wound Care, vol. 11, supplement 4, pp. 1–8, 1998.
[18]  B. D. Boyan, C. H. Lohmann, J. Romero, and Z. Schwartz, “Bone and cartilage tissue engineering,” Clinics in Plastic Surgery, vol. 26, no. 4, pp. 629–645, 1999.
[19]  J. Mayer, E. Karamuk, T. Akaike, and E. Wintermantel, “Matrices for tissue engineering-scaffold structure for a bioartificial liver support system,” Journal of Controlled Release, vol. 64, no. 1–3, pp. 81–90, 2000.
[20]  J. E. Mayer, T. Shin'oka, and D. Shum-Tim, “Tissue engineering of cardiovascular structures,” Current Opinion in Cardiology, vol. 12, no. 6, pp. 528–532, 1997.
[21]  F. Oberpenning, J. Meng, J. J. Yoo, and A. Atala, “De novo reconstitution of a functional mammalian urinary bladder by tissue engineering,” Nature Biotechnology, vol. 17, no. 2, pp. 149–155, 1999.
[22]  E. Tziampazis and A. Sambanis, “Tissue engineering of a bioartificial pancreas: modeling the cell environment and device function,” Biotechnology Progress, vol. 11, no. 2, pp. 115–126, 1995.
[23]  J. Mohammad, J. Shenaq, E. Rabinovsky, and S. Shenaq, “Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap,” Plastic and Reconstructive Surgery, vol. 105, no. 2, pp. 660–666, 2000.
[24]  L. Germain, F. A. Auger, E. Grandbois et al., “Reconstructed human cornea produced in vitro by tissue engineering,” Pathobiology, vol. 67, no. 3, pp. 140–147, 1999.
[25]  C. A. Diedwardo, P. Petrosko, T. O. Acarturk, P. A. Dimilia, W. A. Laframboise, and P. C. Johnson, “Muscle tissue engineering,” Clinics in Plastic Surgery, vol. 26, no. 4, pp. 647–656, 1999.
[26]  L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 762–798, 2007.
[27]  I. V. Yannas, “Classes of materials used in medicine: natural materials,” in Biomaterials Science—An Introduction to Materials in Medicine, B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. Lemons, Eds., pp. 127–136, Elsevier Academic Press, San Diego, Calif, USA, 2004.
[28]  P. Gunatillake, R. Mayadunne, and R. Adhikari, “Recent developments in biodegradable synthetic polymers,” Biotechnology Annual Review, vol. 12, pp. 301–347, 2006.
[29]  P. X. Ma, “Scaffolds for tissue fabrication,” Materials Today, vol. 7, no. 5, pp. 30–40, 2004.
[30]  L. J. Chen and M. Wang, “Production and evaluation of biodegradable composites based on PHB-PHV copolymer,” Biomaterials, vol. 23, no. 13, pp. 2631–2639, 2002.
[31]  L. L. Hench, “Bioceramics,” Journal of the American Ceramic Society, vol. 81, no. 7, pp. 1705–1727, 1998.
[32]  M. G. Cascone, N. Barbani, C. Cristallini, P. Giusti, G. Ciardelli, and L. Lazzeri, “Bioartificial polymeric materials based on polysaccharides,” Journal of Biomaterials Science, vol. 12, no. 3, pp. 267–281, 2001.
[33]  G. Ciardelli, V. Chiono, G. Vozzi et al., “Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications,” Biomacromolecules, vol. 6, no. 4, pp. 1961–1976, 2005.
[34]  J. A. Roether, A. R. Boccaccini, L. L. Hench, V. Maquet, S. Gautier, and R. Jér?me, “Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass? for tissue engineering applications,” Biomaterials, vol. 23, no. 18, pp. 3871–3878, 2002.
[35]  A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, “Laminated three-dimensional biodegradable foams for use in tissue engineering,” Biomaterials, vol. 14, no. 5, pp. 323–330, 1993.
[36]  A. G. Mikos, A. J. Thorsen, L. A. Czerwonka et al., “Preparation and characterization of poly(l-lactic acid) foams,” Polymer, vol. 35, no. 5, pp. 1068–1077, 1994.
[37]  K. Ochi, G. Chen, T. Ushida et al., “Use of isolated mature osteoblasts in abundance acts as desired-shaped bone regeneration in combination with a modified poly-DL-lactic-co-glycolic acid (PLGA)-collagen sponge,” Journal of Cellular Physiology, vol. 194, no. 1, pp. 45–53, 2003.
[38]  C. E. Holy, M. S. Shoichet, and J. E. Davies, “Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period,” Journal of Biomedical Materials Research, vol. 51, no. 3, pp. 376–382, 2000.
[39]  J. M. Karp, M. S. Shoichet, and J. E. Davies, “Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro,” Journal of Biomedical Materials Research A, vol. 64, no. 2, pp. 388–396, 2003.
[40]  H. G. Kang, S. Y. Kim, and Y. M. Lee, “Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications,” Journal of Biomedical Materials Research B, vol. 79, no. 2, pp. 388–397, 2006.
[41]  D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer, “Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents,” Biomaterials, vol. 17, no. 14, pp. 1417–1422, 1996.
[42]  J. J. Yoon and T. G. Park, “Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts,” Journal of Biomedical Materials Research, vol. 55, no. 3, pp. 401–408, 2001.
[43]  W. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, “Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds,” Tissue Engineering, vol. 8, no. 1, pp. 43–52, 2002.
[44]  C. T. Laurencin, M. A. Attawia, H. E. Elgendy, and K. M. Herbert, “Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices,” Bone, vol. 19, no. 1, 1996.
[45]  J. E. Devin, M. A. Attawia, and C. T. Laurencin, “Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair,” Journal of Biomaterials Science, vol. 7, no. 8, pp. 661–669, 1996.
[46]  B. H. Woo, J. W. Kostanski, S. Gebrekidan, B. A. Dani, B. C. Thanoo, and P. P. DeLuca, “Preparation, characterization and in vivo evaluation of 120-day poly(D,L-lactide) leuprolide microspheres,” Journal of Controlled Release, vol. 75, no. 3, pp. 307–315, 2001.
[47]  M. Borden, S. F. El-Amin, M. Attawia, and C. T. Laurencin, “Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair,” Biomaterials, vol. 24, no. 4, pp. 597–609, 2003.
[48]  P. B. Malafaya, A. J. Pedro, A. Peterbauer, C. Gabriel, H. Redl, and R. L. Reis, “Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells,” Journal of Materials Science: Materials in Medicine, vol. 16, no. 12, pp. 1077–1085, 2005.
[49]  P. B. Malafaya, T. C. Santos, M. van Griensven, and R. L. Reis, “Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures,” Biomaterials, vol. 29, no. 29, pp. 3914–3926, 2008.
[50]  R. Zhang and P. X. Ma, “Porous poly(L-lactic acid)/apatite composites created by biomimetic process,” Journal of Biomedical Materials Research, vol. 45, no. 4, pp. 285–293, 1999.
[51]  Y. Ohya, H. Matsunami, E. Yamabe, and T. Ouchi, “Cell attachment and growth on films prepared from poly(depsipeptide-co-lactide) having various functional groups,” Journal of Biomedical Materials Research A, vol. 65, no. 1, pp. 79–88, 2003.
[52]  Y. Ohya, H. Matsunami, and T. Ouchi, “Cell growth on the porous sponges prepared from poly(depsipeptide-co-lactide) having various functional groups,” Journal of Biomaterials Science, vol. 15, no. 1, pp. 111–123, 2004.
[53]  M. Borden, M. Attawia, Y. Khan, and C. T. Laurencin, “Tissue engineered microsphere-based matrices for bone repair: design and evaluation,” Biomaterials, vol. 23, no. 2, pp. 551–559, 2002.
[54]  J. Guan, K. L. Fujimoto, M. S. Sacks, and W. R. Wagner, “Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications,” Biomaterials, vol. 26, no. 18, pp. 3961–3971, 2005.
[55]  T. J. Blokhuis, M. F. Termaat, F. C. Den Boer, P. Patka, F. C. Bakker, and H. J. T. M. Haarman, “Properties of calcium phosphate ceramics in relation to their in vivo behavior,” Journal of Trauma—Injury, Infection and Critical Care, vol. 48, no. 1, pp. 179–186, 2000.
[56]  T. A. Holland, J. K. V. Tessmar, Y. Tabata, and A. G. Mikos, “Transforming growth factor-β1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment,” Journal of Controlled Release, vol. 94, no. 1, pp. 101–114, 2004.
[57]  O. Gauthier, R. Müller, D. Von Stechow et al., “In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study,” Biomaterials, vol. 26, no. 27, pp. 5444–5453, 2005.
[58]  B. Jeong, Y. H. Bae, and S. W. Kim, “Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions,” Macromolecules, vol. 32, no. 21, pp. 7064–7069, 1999.
[59]  S. Ibusuki, Y. Fujii, Y. Iwamoto, and T. Matsuda, “Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance,” Tissue Engineering, vol. 9, no. 2, pp. 371–384, 2003.
[60]  J. Y. Seong, Y. J. Jun, B. Jeong, and Y. S. Sohn, “New thermogelling poly(organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as side groups,” Polymer, vol. 46, no. 14, pp. 5075–5081, 2005.
[61]  J. Yeh, Y. Ling, J. M. Karp et al., “Micromolding of shape-controlled, harvestable cell-laden hydrogels,” Biomaterials, vol. 27, no. 31, pp. 5391–5398, 2006.
[62]  J. Fukuda, A. Khademhosseini, Y. Yeo et al., “Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures,” Biomaterials, vol. 27, no. 30, pp. 5259–5267, 2006.
[63]  A. Khademhosseini, G. Eng, J. Yeh et al., “Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment,” Journal of Biomedical Materials Research A, vol. 79, no. 3, pp. 522–532, 2006.
[64]  D. J. Beebe, J. S. Moore, J. M. Bauer et al., “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature, vol. 404, no. 6778, pp. 588–590, 2000.
[65]  V. A. Liu and S. N. Bhatia, “Three-dimensional photopatterning of hydrogels containing living cells,” Biomedical Microdevices, vol. 4, no. 4, pp. 257–266, 2002.
[66]  D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nature Materials, vol. 5, no. 5, pp. 365–369, 2006.
[67]  T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 2, no. 1, pp. 24–26, 2002.
[68]  J. A. Burdick, A. Khademhosseini, and R. Langer, “Fabrication of gradient hydrogels using a microfluidics/photopolymerization process,” Langmuir, vol. 20, no. 13, pp. 5153–5156, 2004.
[69]  S. Xu, Z. Nie, M. Seo et al., “Generation of monodisperse particles by using microfluidics: control over size, shape, and composition,” Angewandte Chemie International Edition, vol. 44, no. 5, pp. 724–728, 2005.
[70]  N. A. Peppas and A. R. Khare, “Preparation, structure and diffusional behavior of hydrogels in controlled release,” Advanced Drug Delivery Reviews, vol. 11, no. 1-2, pp. 1–35, 1993.
[71]  T. Alexakis, K. Boadid, D. Guong, et al., “Microencapsulation of DNA within alginate microspheres and crosslinked chitosan membranes for in vivo application,” Applied Biochemistry and Biotechnology, vol. 50, no. 1, pp. 93–106, 1995.
[72]  C. P. Reis, A. J. Ribeiro, R. J. Neufeld, and F. Veiga, “Alginate microparticles as novel carrier for oral insulin delivery,” Biotechnology and Bioengineering, vol. 96, no. 5, pp. 977–989, 2007.
[73]  G. Steinhoff, U. Stock, N. Karim et al., “Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: In vivo restoration of valve tissue,” Circulation, vol. 102, no. 19, pp. III50–III55, 2000.
[74]  D. E. Zhao, R. B. Li, W. Y. Liu et al., “Tissue-engineered heart valve on acellular aortic valve scaffold: in-vivo study,” Asian Cardiovascular and Thoracic Annals, vol. 11, no. 2, pp. 153–156, 2003.
[75]  H. C. Liang, Y. Chang, C. K. Hsu, M. H. Lee, and H. W. Sung, “Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern,” Biomaterials, vol. 25, no. 17, pp. 3541–3552, 2004.
[76]  A. Tachibana, Y. Furuta, H. Takeshima, T. Tanabe, and K. Yamauchi, “Fabrication of wool keratin sponge scaffolds for long-term cell cultivation,” Journal of Biotechnology, vol. 93, no. 2, pp. 165–170, 2002.
[77]  A. Tachibana, S. Kaneko, T. Tanabe, and K. Yamauchi, “Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation,” Biomaterials, vol. 26, no. 3, pp. 297–302, 2005.
[78]  K. Katoh, T. Tanabe, and K. Yamauchi, “Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity,” Biomaterials, vol. 25, no. 18, pp. 4255–4262, 2004.
[79]  J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151–160, 1995.
[80]  W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, “Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1105–1114, 2003.
[81]  J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J. H. Wendorff, and A. Greiner, “Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings,” Biomacromolecules, vol. 6, no. 3, pp. 1484–1488, 2005.
[82]  S. Hirano, M. Zhang, M. Nakagawa, and T. Miyata, “Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility,” Biomaterials, vol. 21, no. 10, pp. 997–1003, 2000.
[83]  S. J. Pomfret, P. N. Adams, N. P. Comfort, and A. P. Monkman, “Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process,” Polymer, vol. 41, no. 6, pp. 2265–2269, 2000.
[84]  H. Okuzaki, Y. Harashina, and H. Yan, “Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol,” European Polymer Journal, vol. 45, no. 1, pp. 256–261, 2009.
[85]  J. Lyons, C. Li, and F. Ko, “Melt-electrospinning—part I: processing parameters and geometric properties,” Polymer, vol. 45, no. 22, pp. 7597–7603, 2004.
[86]  C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, “Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup,” Polymer, vol. 48, no. 11, pp. 3306–3316, 2007.
[87]  K. Kim, C. Lee, I. W. Kim, and J. Kim, “Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning,” Fibers and Polymers, vol. 10, no. 1, pp. 60–64, 2009.
[88]  M. J. B. Wissink, R. Beernink, J. S. Pieper et al., “Binding and release of basic fibroblast growth factor from heparinized collagen matrices,” Biomaterials, vol. 22, no. 16, pp. 2291–2299, 2001.
[89]  F. Causa, P. A. Netti, and L. Ambrosio, “A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue,” Biomaterials, vol. 28, no. 34, pp. 5093–5099, 2007.
[90]  Y. C. Ho, F. L. Mi, H. W. Sung, and P. L. Kuo, “Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor,” International Journal of Pharmaceutics, vol. 376, no. 1-2, pp. 69–75, 2009.
[91]  P. Sepulveda and J. G. P. Binner, “Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers,” Journal of the European Ceramic Society, vol. 19, no. 12, pp. 2059–2066, 1999.
[92]  Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, “45S5 Bioglass?-derived glass-ceramic scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 11, pp. 2414–2425, 2006.
[93]  I. H. Jo, K. H. Shin, Y. M. Soon, Y. H. Koh, J. H. Lee, and H. E. Kim, “Highly porous hydroxyapatite scaffolds with elongated pores using stretched polymeric sponges as novel template,” Materials Letters, vol. 63, no. 20, pp. 1702–1704, 2009.
[94]  F. Li, Q. L. Feng, F. Z. Cui, H. D. Li, and H. Schubert, “A simple biomimetic method for calcium phosphate coating,” Surface and Coatings Technology, vol. 154, no. 1, pp. 88–93, 2002.
[95]  J. Chen, B. Chu, and B. S. Hsiao, “Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds,” Journal of Biomedical Materials Research A, vol. 79, no. 2, pp. 307–317, 2006.
[96]  F. Yang, J. G. C. Wolke, and J. A. Jansen, “Biomimetic calcium phosphate coating on electrospun poly(ε-caprolactone) scaffolds for bone tissue engineering,” Chemical Engineering Journal, vol. 137, no. 1, pp. 154–161, 2008.
[97]  A. V. Lemmo, D. J. Rose, and T. C. Tisone, “Inkjet dispensing technology: applications in drug discovery,” Current Opinion in Biotechnology, vol. 9, no. 6, pp. 615–617, 1998.
[98]  P. Calvert, “Inkjet printing for materials and devices,” Chemistry of Materials, vol. 13, no. 10, pp. 3299–3305, 2001.
[99]  L. Pardo, W. Cris Wilson, and T. Boland, “Characterization of patterned self-assembled monolayers and protein arrays generated by the ink-jet method,” Langmuir, vol. 19, no. 5, pp. 1462–1466, 2003.
[100]  W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran, and M. W. Lee, “Indirect fabrication of collagen scaffold based on inkjet printing technique,” Rapid Prototyping Journal, vol. 12, no. 4, pp. 229–237, 2006.
[101]  V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends in Biotechnology, vol. 21, no. 4, pp. 157–161, 2003.
[102]  W. Sun, A. Darling, B. Starly, and J. Nam, “Computer-aided tissue engineering: overview, scope and challenges,” Biotechnology and Applied Biochemistry, vol. 39, part 1, pp. 29–47, 2004.
[103]  W. Sun and P. Lal, “Recent development on computer aided tissue engineering—a review,” Computer Methods and Programs in Biomedicine, vol. 67, no. 2, pp. 85–103, 2002.
[104]  W. Sun, B. Starly, A. Darling, and C. Gomez, “Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds,” Biotechnology and Applied Biochemistry, vol. 39, no. 1, pp. 49–58, 2004.
[105]  Z. Fang, B. Starly, and W. Sun, “Computer-aided characterization for effective mechanical properties of porous tissue scaffolds,” CAD Computer Aided Design, vol. 37, no. 1, pp. 65–72, 2005.
[106]  S. Lalan, I. Pomerantseva, and J. P. Vacanti, “Tissue engineering and its potential impact on surgery,” World Journal of Surgery, vol. 25, no. 11, pp. 1458–1466, 2001.
[107]  T. Boland, V. Mironov, A. Gutowska, E. A. Roth, and R. R. Markwald, “Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels,” Anatomical Record A, vol. 272, no. 2, pp. 497–502, 2003.
[108]  N. Hirata, K. I. Matsumoto, T. Inishita, Y. Takenaka, Y. Suma, and H. Shintani, “Gamma-ray irradiation, autoclave and ethylene oxide sterilization to thermosetting polyurethane: sterilization to polyurethane,” Radiation Physics and Chemistry, vol. 46, no. 3, pp. 377–381, 1995.
[109]  K. A. Hooper, J. D. Cox, and J. Kohn, “Comparison of the effect of ethylene oxide and γ-irradiation on selected tyrosine-derived polycarbonates and poly(L-lactic acid),” Journal of Applied Polymer Science, vol. 63, no. 11, pp. 1499–1510, 1997.
[110]  C. E. Holy, C. Cheng, J. E. Davies, and M. S. Shoichet, “Optimizing the sterilization of PLGA scaffolds for use in tissue engineering,” Biomaterials, vol. 22, no. 1, pp. 25–31, 2001.
[111]  C. Volland, M. Wolff, and T. Kissel, “The influence of terminal gamma-sterilization on captopril containing poly(D,L-lactide-co-glycolide) microspheres,” Journal of Controlled Release, vol. 31, no. 3, pp. 293–304, 1994.
[112]  M. B. Sintzel, K. S. Abdellaoui, K. Mader, et al., “Influence of irradiation sterilization on a semi-solid poly(ortho ester),” International Journal of Pharmaceutics, vol. 175, pp. 165–176, 1998.
[113]  L. Montanari, M. Costantini, E. C. Signoretti et al., “Gamma irradiation effects on poly(DL-lactictide-co-glycolide) microspheres,” Journal of Controlled Release, vol. 56, no. 1–3, pp. 219–229, 1998.
[114]  M. Ohrlander, R. Erickson, R. Palmgren, A. Wirsen, and A. C. Albertsson, “The effect of electron beam irradiation on PCL and PDXO-X monitored by luminescence and electron spin resonance measurements,” Polymer, vol. 41, pp. 1277–1286, 1999.
[115]  J. S. C. Loo, C. P. Ooi, and F. Y. C. Boey, “Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation,” Biomaterials, vol. 26, no. 12, pp. 1359–1367, 2005.
[116]  K. Odelius, P. Plikk, and A. C. Albertsson, “The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization,” Biomaterials, vol. 29, no. 2, pp. 129–140, 2008.
[117]  E. M. Darmady, K. E. Hughes, J. D. Jones, D. Prince, and W. Tuke, “Sterilization by dry heat,” Journal of Clinical Pathology, vol. 14, pp. 38–44, 1961.
[118]  Q. Fu, M. N. Rahaman, B. S. Bal, and R. F. Brown, “In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures,” Materials Science and Engineering C, vol. 29, no. 7, pp. 2147–2153, 2009.
[119]  F. A. Müller, L. Müller, I. Hofmann, P. Greil, M. M. Wenzel, and R. Staudenmaier, “Cellulose-based scaffold materials for cartilage tissue engineering,” Biomaterials, vol. 27, no. 21, pp. 3955–3963, 2006.
[120]  K. Gellynck, P. C. M. Verdonk, E. Van Nimmen et al., “Silkworm and spider silk scaffolds for chondrocyte support,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 11, pp. 3399–3409, 2008.
[121]  S. Terasaka, Y. Iwasaki, N. Shinya, and T. Uchida, “Fibrin glue and polyglycolic acid nonwoven fabric as a biocompatible dural substitute,” Neurosurgery, vol. 58, no. 1, pp. S-134–S-138, 2006.
[122]  P. B. Maurus and C. C. Kaeding, “Bioabsorbable implant material review,” Operative Techniques in Sports Medicine, vol. 12, no. 3, pp. 158–160, 2004.
[123]  H. H. Lu, J. A. Cooper, S. Manuel et al., “Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies,” Biomaterials, vol. 26, no. 23, pp. 4805–4816, 2005.
[124]  J. A. Cooper, H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin, “Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation,” Biomaterials, vol. 26, no. 13, pp. 1523–1532, 2005.
[125]  M. Zilberman, K. D. Nelson, and R. C. Eberhart, “Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents,” Journal of Biomedical Materials Research B, vol. 74, no. 2, pp. 792–799, 2005.
[126]  S. Leinonen, E. Suokas, M. Veiranto, P. Tormala, T. Waris, and N. Ashammakhi, “Healing power of bioadsorbable ciprofloxacin- containing self reinforced poly(L/DL-lactide 70/30 bioactive glass 13 miniscrews in human cadaver bone,” Journal of Craniofacial Surgery, vol. 13, pp. 212–218, 2002.
[127]  C. W. Pouton and S. Akhtar, “Biosynthetic polyhydroxyalkanoates and their potential in drug delivery,” Advanced Drug Delivery Reviews, vol. 18, no. 2, pp. 133–162, 1996.
[128]  B. Saad, T. D. Hirt, M. Welti, G. K. Uhlschmid, P. Neuenschwander, and U. W. Suter, “Development of degradable polyesterurethanes for medical applications: in vitro and in vivo evaluations,” Journal of Biomedical Materials Research, vol. 36, no. 1, pp. 65–74, 1997.
[129]  I. C. Bonzani, R. Adhikari, S. Houshyar, R. Mayadunne, P. Gunatillake, and M. M. Stevens, “Synthesis of two-component injectable polyurethanes for bone tissue engineering,” Biomaterials, vol. 28, no. 3, pp. 423–433, 2007.
[130]  J. Heller, “Ocular delivery using poly(ortho esters),” Advanced Drug Delivery Reviews, vol. 57, no. 14, pp. 2053–2062, 2005.
[131]  D. S. Katti, S. Lakshmi, R. Langer, and C. T. Laurencin, “Toxicity, biodegradation and elimination of polyanhydrides,” Advanced Drug Delivery Reviews, vol. 54, no. 7, pp. 933–961, 2002.
[132]  C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, and P. Couvreur, “Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles,” Journal of Controlled Release, vol. 93, no. 2, pp. 151–160, 2003.
[133]  P. Sai and M. Babu, “Collagen based dressings—a review,” Burns, vol. 26, no. 1, pp. 54–62, 2000.
[134]  X. Duan, C. McLaughlin, M. Griffith, and H. Sheardown, “Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering,” Biomaterials, vol. 28, no. 1, pp. 78–88, 2007.
[135]  D. R. Hunt, S. A. Joanovic, U. M. E. Wikesjo, J. M. Wozney, and D. W. Bernard, “Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. A pilot study,” Journal of Periodontology, vol. 72, pp. 651–657, 2001.
[136]  B. L. Eppley and B. Dadvand, “Injectable soft-tissue fillers: clinical overview,” Plastic and Reconstructive Surgery, vol. 118, no. 4, pp. 98e–106e, 2006.
[137]  Y. Kato, S. Nakamura, and M. Nishimura, “Beneficial actions of hyaluronan (HA) on arthritic joints: effects of molecular weight of HA on elasticity of cartilage matrix,” Biorheology, vol. 43, no. 3-4, pp. 347–354, 2006.
[138]  D. W. Hutmacher, “Scaffold design and fabrication technologies for engineering tissues—State of the art and future perspectives,” Journal of Biomaterials Science, vol. 12, no. 1, pp. 107–124, 2001.
[139]  L. E. Freed, G. Vunjak-Novakovic, R. J. Biron et al., “Biodegradable polymer scaffolds for tissue engineering,” Biotechnology, vol. 12, no. 7, pp. 689–693, 1994.
[140]  L. E. Freed and G. Vunjak-Novakovic, “Culture of organized cell communities,” Advanced Drug Delivery Reviews, vol. 33, no. 1-2, pp. 15–30, 1998.
[141]  P. X. Ma and R. Zhang, “Microtubular architecture of biodegradable polymer scaffolds,” Journal of Biomedical Materials Research, vol. 56, no. 4, pp. 469–477, 2001.
[142]  S. Freiberg and X. X. Zhu, “Polymer microspheres for controlled drug release,” International Journal of Pharmaceutics, vol. 282, no. 1-2, pp. 1–18, 2004.
[143]  D. J. Mooney, G. Organ, J. P. Vacanti, and R. Langer, “Design and fabrication of biodegradable polymer devices to engineer tubular tissues,” Cell Transplantation, vol. 3, no. 2, pp. 203–210, 1994.
[144]  G. Wei and P. X. Ma, “Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering,” Biomaterials, vol. 25, no. 19, pp. 4749–4757, 2004.
[145]  E. M. Ouriemchi and J. M. Vergnaud, “Processes of drug transfer with three different polymeric systems with transdermal drug delivery,” Computational and Theoretical Polymer Science, vol. 10, no. 5, pp. 391–401, 2000.
[146]  Q. Hou, D. W. Grijpma, and J. Feijen, “Preparation of porous poly(ε-caprolactone) structures,” Macromolecular Rapid Communications, vol. 23, no. 4, pp. 247–252, 2002.
[147]  Q. Hou, D. W. Grijpma, and J. Feijen, “Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique,” Biomaterials, vol. 24, no. 11, pp. 1937–1947, 2003.
[148]  M. Cabodi, N. W. Choi, J. P. Gleghorn, C. S. D. Lee, L. J. Bonassar, and A. D. Stroock, “A microfluidic biomaterial,” Journal of the American Chemical Society, vol. 127, no. 40, pp. 13788–13789, 2005.
[149]  M. S. Jhon and J. D. Andrade, “Water and hydrogels,” Journal of Biomedical Materials Research, vol. 7, no. 6, pp. 509–522, 1973.
[150]  A. S. Hoffman, “Hydrogels for biomedical applications,” Annals of the New York Academy of Sciences, vol. 944, pp. 62–73, 2001.
[151]  J. A. Hubbell, “Bioactive biomaterials,” Current Opinion in Biotechnology, vol. 10, no. 2, pp. 123–129, 1999.
[152]  K. Y. Lee and D. J. Mooney, “Hydrogels for tissue engineering,” Chemical Reviews, vol. 101, no. 7, pp. 1869–1879, 2001.
[153]  N. A. Peppas and A. R. Khare, “Preparation, structure and diffusional behavior of hydrogels in controlled release,” Advanced Drug Delivery Reviews, vol. 11, no. 1-2, pp. 1–35, 1993.
[154]  Y. Tabata, “Tissue regeneration based on growth factor release,” Tissue Engineering, vol. 9, no. 4, pp. 5–15, 2003.
[155]  S. J. Bryant and K. S. Anseth, “The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels,” Biomaterials, vol. 22, no. 6, pp. 619–626, 2001.
[156]  D. G. Wallace and J. Rosenblatt, “Collagen gel systems for sustained delivery and tissue engineering,” Advanced Drug Delivery Reviews, vol. 55, no. 12, pp. 1631–1649, 2003.
[157]  U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules, vol. 5, no. 3, pp. 786–792, 2004.
[158]  D. Eyrich, F. Brandl, B. Appel et al., “Long-term stable fibrin gels for cartilage engineering,” Biomaterials, vol. 28, no. 1, pp. 55–65, 2007.
[159]  L. A. Solchaga, J. Gao, J. E. Dennis et al., “Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle,” Tissue Engineering, vol. 8, no. 2, pp. 333–347, 2002.
[160]  H. J. Kong, M. K. Smith, and D. J. Mooney, “Designing alginate hydrogels to maintain viability of immobilized cells,” Biomaterials, vol. 24, no. 22, pp. 4023–4029, 2003.
[161]  J. K. Francis Suh and H. W. T. Matthew, “Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review,” Biomaterials, vol. 21, no. 24, pp. 2589–2598, 2000.
[162]  R. H. Schmedlen, K. S. Masters, and J. L. West, “Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering,” Biomaterials, vol. 23, no. 22, pp. 4325–4332, 2002.
[163]  E. Behravesh and A. G. Mikos, “Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels,” Journal of Biomedical Materials Research A, vol. 66, no. 3, pp. 698–706, 2003.
[164]  S. J. Bryant, K. A. Davis-Arehart, N. Luo, R. K. Shoemaker, J. A. Arthur, and K. S. Anseth, “Synthesis and characterization of photopolymerized multifunctional hydrogels: water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation,” Macromolecules, vol. 37, no. 18, pp. 6726–6733, 2004.
[165]  P. Berndt, G. B. Fields, and M. Tirrell, “Synthetic lipidation of peptides and amino acids: monolayer structure and properties,” Journal of the American Chemical Society, vol. 117, no. 37, pp. 9515–9522, 1995.
[166]  S. R. Bhattarai, N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim, “Novel biodegradable electrospun membrane: scaffold for tissue engineering,” Biomaterials, vol. 25, no. 13, pp. 2595–2602, 2004.
[167]  Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, “Potential of nanofiber matrix as tissue-engineering scaffolds,” Tissue Engineering, vol. 11, no. 1-2, pp. 101–109, 2005.
[168]  R. Vasita and D. S. Katti, “Nanofibers and their applications in tissue engineering,” International Journal of Nanomedicine, vol. 1, no. 1, pp. 15–30, 2006.
[169]  J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, “Electrospinning of collagen nanofibers,” Biomacromolecules, vol. 3, no. 2, pp. 232–238, 2002.
[170]  Y. Zhang, H. Ouyang, T. L. Chwee, S. Ramakrishna, and Z. M. Huang, “Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds,” Journal of Biomedical Materials Research B, vol. 72, no. 1, pp. 156–165, 2005.
[171]  X. Geng, O. H. Kwon, and J. Jang, “Electrospinning of chitosan dissolved in concentrated acetic acid solution,” Biomaterials, vol. 26, no. 27, pp. 5427–5432, 2005.
[172]  I. C. Um, D. Fang, B. S. Hsiao, A. Okamoto, and B. Chu, “Electro-spinning and electro-blowing of hyaluronic acid,” Biomacromolecules, vol. 5, no. 4, pp. 1428–1436, 2004.
[173]  H. J. Jin, J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, “Human bone marrow stromal cell responses on electrospun silk fibroin mats,” Biomaterials, vol. 25, no. 6, pp. 1039–1047, 2004.
[174]  F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, “Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering,” Biomaterials, vol. 26, no. 15, pp. 2603–2610, 2005.
[175]  S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, G. Cossu, and S. Mantero, “Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering,” Biomaterials, vol. 26, no. 22, pp. 4606–4615, 2005.
[176]  W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, “Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1105–1114, 2003.
[177]  K. Uematsu, K. Hattori, Y. Ishimoto et al., “Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold,” Biomaterials, vol. 26, no. 20, pp. 4273–4279, 2005.
[178]  E. R. Kenawy, G. L. Bowlin, K. Mansfield et al., “Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend,” Journal of Controlled Release, vol. 81, no. 1-2, pp. 57–64, 2002.
[179]  X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna, “Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation,” Biomaterials, vol. 25, no. 10, pp. 1883–1890, 2004.
[180]  G. Verreck, I. Chun, J. Rosenblatt et al., “Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer,” Journal of Controlled Release, vol. 92, no. 3, pp. 349–360, 2003.
[181]  M. Singh, C. P. Morris, R. J. Ellis, M. S. Detamore, and C. Berkland, “Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering,” Tissue Engineering C, vol. 14, no. 4, pp. 299–309, 2008.
[182]  M. Singh, B. Sandhu, A. Scurto, C. Berkland, and M. S. Detamore, “Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO2 as a sintering agent,” Acta Biomaterialia, vol. 6, no. 1, pp. 137–143, 2010.
[183]  D. Stephens, L. Li, D. Robinson et al., “Investigation of the in vitro release of gentamicin from a polyanhydride matrix,” Journal of Controlled Release, vol. 63, no. 3, pp. 305–317, 2000.
[184]  C. Berkland, M. King, A. Cox, K. Kim, and D. W. Pack, “Precise control of PLG microsphere size provides enhanced control of drug release rate,” Journal of Controlled Release, vol. 82, no. 1, pp. 137–147, 2002.
[185]  H. B. Ravivarapu, K. Burton, and P. P. DeLuca, “Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 2, pp. 263–270, 2000.
[186]  R. A. Jain, C. T. Rhodes, A. M. Railkar, A. W. Malick, and N. H. Shah, “Controlled delivery of drugs from a novel injectable in situ formed biodegradable PLGA microsphere system,” Journal of Microencapsulation, vol. 17, no. 3, pp. 343–362, 2000.
[187]  C. Berkland, K. Kim, and D. W. Pack, “PLG microsphere size controls drug release rate through several competing factors,” Pharmaceutical Research, vol. 20, no. 7, pp. 1055–1062, 2003.
[188]  M. Borden, M. Attawia, Y. Khan, S. F. El-Amin, and C. T. Laurencin, “Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix,” Journal of Bone and Joint Surgery B, vol. 86, no. 8, pp. 1200–1208, 2004.
[189]  J. Yao, S. Radin, P. S. Leboy P., and P. Ducheyne, “The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering,” Biomaterials, vol. 26, no. 14, pp. 1935–1943, 2005.
[190]  A. Jaklenec, E. Wan, M. E. Murray, and E. Mathiowitz, “Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering,” Biomaterials, vol. 29, no. 2, pp. 185–192, 2008.
[191]  A. Jaklenec, A. Hinckfuss, B. Bilgen, D. M. Ciombor, R. Aaron, and E. Mathiowitz, “Sequential release of bioactive IGF-I and TGF-β1 from PLGA microsphere-based scaffolds,” Biomaterials, vol. 29, no. 10, pp. 1518–1525, 2008.
[192]  J. L. Brown, L. S. Nair, and C. T. Laurencin, “Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration,” Journal of Biomedical Materials Research B, vol. 86, no. 2, pp. 396–406, 2008.
[193]  S. P. Nukavarapu, S. G. Kumbar, J. L. Brown et al., “Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering,” Biomacromolecules, vol. 9, no. 7, pp. 1818–1825, 2008.
[194]  M. Borden, M. Attawia, and C. T. Laurencin, “The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies,” Journal of Biomedical Materials Research, vol. 61, no. 3, pp. 421–429, 2002.
[195]  Y. M. Khan, D. S. Katti, and C. T. Laurencin, “Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation,” Journal of Biomedical Materials Research A, vol. 69, no. 4, pp. 728–737, 2004.
[196]  K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18, pp. 3413–3431, 2006.
[197]  L. L. Hench, “Bioceramics: from concept to clinic,” American Ceramic Society Bulletin, vol. 72, pp. 93–98, 1993.
[198]  R. L. Hentrich Jr., G. A. Graves Jr., H. G. Stein, and P. K. Bajpai, “Evaluation of inert and resorbable ceramics for future clinical orthopedic applications,” Journal of Biomedical Materials Research, vol. 5, no. 1, pp. 25–51, 1971.
[199]  J. B. Park and R. S. Lakes, Biomaterials—An Introduction, Plenum Press, New York, NY, USA, 2nd edition, 1992.
[200]  J. J. Blaker, J. E. Gough, V. Maquet, I. Notingher, and A. R. Boccaccini, “In vitro evaluation of novel bioactive composites based on Bioglass?-filled polylactide foams for bone tissue engineering scaffolds,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1401–1411, 2003.
[201]  H. W. Kim, E. J. Lee, I. K. Jun, H. E. Kim, and J. C. Knowles, “Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration,” Journal of Biomedical Materials Research B, vol. 75, no. 1, pp. 34–41, 2005.
[202]  C. Du, F. Z. Cui, X. D. Zhu, and K. De Groot, “Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture,” Journal of Biomedical Materials Research, vol. 44, no. 4, pp. 407–415, 1999.
[203]  A. Bigi, E. Boanini, S. Panzavolta, N. Roveri, and K. Rubini, “Bonelike apatite growth on hydroxyapatite-gelatin sponges from simulated body fluid,” Journal of Biomedical Materials Research, vol. 59, no. 4, pp. 709–715, 2002.
[204]  Y. Zhang and M. Zhang, “Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering,” Journal of Biomedical Materials Research, vol. 55, no. 3, pp. 304–312, 2001.
[205]  S. E. Dahms, H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human,” British Journal of Urology, vol. 82, no. 3, pp. 411–419, 1998.
[206]  J. J. Yoo, J. Meng, F. Oberpenning, and A. Atala, “Bladder augmentation using allogenic bladder submucosa seeded with cells,” Urology, vol. 51, no. 2, pp. 221–225, 1998.
[207]  F. Chen, J. J. Yoo, and A. Atala, “Acellular collagen matrix as a possible 'off the shelf' biomaterial for urethral repair,” Urology, vol. 54, no. 3, pp. 407–410, 1999.
[208]  G. J. Wilson, D. W. Courtman, P. Klement, J. M. Lee, and H. Yeger, “Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement,” Annals of Thoracic Surgery, vol. 60, supplement 2, pp. S353–S358, 1995.
[209]  S. E. Dahms, H. J. Piechota, L. Nunes, R. Dahiya, T. F. Lue, and E. A. Tanagho, “Free ureteral replacement in rats: regeneration of ureteral wall components in the acellular matrix graft,” Urology, vol. 50, no. 5, pp. 818–825, 1997.
[210]  M. Probst, R. Dahiya, S. Carrier, and E. A. Tanagho, “Reproduction of functional smooth muscle tissue and partial bladder replacement,” British Journal of Urology, vol. 79, no. 4, pp. 505–515, 1997.
[211]  T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, “Decellularization of tissues and organs,” Biomaterials, vol. 27, no. 19, pp. 3675–3683, 2006.
[212]  C. Stamm, A. Khosravi, N. Grabow et al., “Biomatrix/polymer composite material for heart valve tissue engineering,” Annals of Thoracic Surgery, vol. 78, no. 6, pp. 2084–2093, 2004.
[213]  M. Sokolsky-Papkov, K. Agashi, A. Olaye, K. Shakesheff, and A. J. Domb, “Polymer carriers for drug delivery in tissue engineering,” Advanced Drug Delivery Reviews, vol. 59, no. 4-5, pp. 187–206, 2007.
[214]  B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, “Role of material surfaces in regulating bone and cartilage cell response,” Biomaterials, vol. 17, no. 2, pp. 137–146, 1996.
[215]  K. T. Tran, L. Griffith, and A. Wells, “Extracellular matrix signaling through growth factor receptors during wound healing,” Wound Repair and Regeneration, vol. 12, no. 3, pp. 262–268, 2004.
[216]  K. S. Midwood, L. V. Williams, and J. E. Schwarzbauer, “Tissue repair and the dynamics of the extracellular matrix,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 6, pp. 1031–1037, 2004.
[217]  R. N. S. Sodhi, “Application of surface analytical and modification techniques to biomaterial research,” Journal of Electron Spectroscopy and Related Phenomena, vol. 81, no. 3, pp. 269–284, 1996.
[218]  D. M. Brewis and D. Briggs, “Adhesion to polyethylene and polypropylene,” Polymer, vol. 22, no. 1, pp. 7–16, 1981.
[219]  D. L. Elbert and J. A. Hubbell, “Surface treatments of polymers for biocompatibility,” Annual Review of Materials Science, vol. 26, no. 1, pp. 365–394, 1996.
[220]  C. A. Léon y León, “New perspectives in mercury porosimetry,” Advances in Colloid and Interface Science, vol. 76-77, pp. 341–372, 1998.
[221]  A. G. A. Coombes, S. C. Rizzi, M. Williamson, J. E. Barralet, S. Downes, and W. A. Wallace, “Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery,” Biomaterials, vol. 25, no. 2, pp. 315–325, 2004.
[222]  J. H. Brauker, V. E. Carr-Brendel, L. A. Martinson, J. Crudele, W. D. Johnston, and R. C. Johnson, “Neovascularization of synthetic membranes directed by membrane micro architecture,” Journal of Biomedical Materials Research, vol. 29, pp. 1517–1524, 1995.
[223]  J. J. Klawitter and S. F. Hulbert, “Application of porous ceramics for the attachment of load-bearing internal orthopedic applications,” Journal of Biomedical Materials Research A Symposium, vol. 2, pp. 161–168, 1971.
[224]  S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering—part I: traditional factors,” Tissue Engineering, vol. 7, no. 6, pp. 679–689, 2001.
[225]  K. Whang, K. E. Healy, D. R. Elenz, et al., “Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture,” Tissue Engineering, vol. 5, no. 1, pp. 35–51, 1999.
[226]  I. V. Yannas, E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy, “Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 3, pp. 933–937, 1989.
[227]  A. J. Salgado, O. P. Coutinho, and R. L. Reis, “Bone tissue engineering: state of the art and future trends,” Macromolecular Bioscience, vol. 4, no. 8, pp. 743–765, 2004.
[228]  D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, 2008.
[229]  G. Khang, J. H. Jeon, J. W. Lee, S. C. Cho, and H. B. Lee, “Cell and platelet adhesions on plasma glow discharge-treated poly(lactide-co-glycolide),” Bio-Medical Materials and Engineering, vol. 7, no. 6, pp. 357–368, 1997.
[230]  K. D. Colter, M. Shen, and A. T. Bell, “Reduction of progesterone release rate through silicone membranes by plasma polymerization,” Biomaterials Medical Devices and Artificial Organs, vol. 5, no. 1, pp. 13–24, 1977.
[231]  M. Sato, M. Ishihara, M. Ishihara et al., “Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering,” Journal of Biomedical Materials Research B, vol. 83, no. 1, pp. 181–188, 2007.
[232]  H. Park, K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park, “Plasma-treated poly(lactic-co-glycolic acid) nanofibers for tissue engineering,” Macromolecular Research, vol. 15, no. 3, pp. 238–243, 2007.
[233]  S. A. Mitchell, M. R. Davidson, and R. H. Bradley, “Improved cellular adhesion to acetone plasma modified polystyrene surfaces,” Journal of Colloid and Interface Science, vol. 281, no. 1, pp. 122–129, 2005.
[234]  J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, 2000.
[235]  M. A. Woodruff and D. W. Hutmacher, “The return of a forgotten polymer—polycaprolactone in the 21st century,” Progress in Polymer Science, vol. 35, no. 10, pp. 1217–1256, 2010.
[236]  W. P. Ye, F. S. Du, W. H. Jin, J. Y. Yang, and Y. Xu, “In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers: influence of composition, temperature and morphology,” Reactive and Functional Polymers, vol. 32, no. 2, pp. 161–168, 1997.
[237]  K. S. Anseth, C. N. Bowman, and L. Brannon-Peppas, “Mechanical properties of hydrogels and their experimental determination,” Biomaterials, vol. 17, no. 17, pp. 1647–1657, 1996.
[238]  P. V. Moghe, F. Berthiaume, R. M. Ezzell, M. Toner, R. G. Tompkins, and M. L. Yarmush, “Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function,” Biomaterials, vol. 17, no. 3, pp. 373–385, 1996.
[239]  P. L. Ryan, R. A. Foty, J. Kohn, and M. S. Steinberg, “Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4323–4327, 2001.
[240]  D. E. Ingber, “Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology,” Circulation Research, vol. 91, no. 10, pp. 877–887, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133