全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis and Characterization of New Photoluminescent Oxadiazole/Carbazole-Containing Polymers

DOI: 10.1155/2010/581056

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report on the synthesis and the characterization of a new class of segmented polyethers POC containing the oxadiazole and carbazole units. The polymers exhibit a high thermal stability, high glass transition temperatures, and good solubility in common organic solvents, despite the extended aromatic portion in the main polymer chain. The synthetic procedures are simple, and no acid side-products are obtained. According to previous reports on oxadiazole/carbazole-containing materials, POCs show high photoluminescence activity in the blue region of the visible spectra. The good solubility in chlorinate solvents allows the preparation of films with homogeneous thickness by spin coating. Glass transition temperature in the range 115– ensures good stability of film morphology at room temperature. The only exception is POC(6), which shows a poor solubility and higher ( ), due to its shorter aliphatic chain portion. For these features, polymers POC are potential candidate materials for fabricating blue light-emitting devices. 1. Introduction Phosphorescent polymer light-emitting diodes (PLEDs) have attracted considerable attention for their convenient preparation from solution by spin coating or inkjet printing methods. In order to have a balanced carrier recombination in the emitting layer, the polymer should possess good carrier transport properties, as well as energy level matching with electrodes for effective charge injection [1–13]. To improve the electron transfer in PLEDs, researchers usually spin a p-type polymer on an n-type polymer with electron transport properties. But this kind of multilayer system may suffer difficulties in spinning a polymer solution on an organic film, which can easily dissolve. To deal with this issue, polymers containing both hole- and electron-transporting moieties have been prepared. Recently, polymers with either electron-withdrawing (such as oxadiazole, diphenylquinoline, etc.) or electron-donating groups (such as triphenylamine, carbazole, etc.) have been prepared [14–17]. Oxadiazole/carbazole derivatives having good solubility, high quality film formation, and a strong blue emission can play a very important role in organic/polymeric optoelectronic materials, and they can be used as single-layer materials for OLEDs. In this work we report on the synthesis and characterization of a series of oxadiazole/carbazole-containing polymers (POCs), having the formula mentioned in Scheme 1, where is 12 or 6 for the two homopolymers and 12 and 6 or 8 and 4 for the two copolymers. The synthetic procedures are based on the

References

[1]  J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al., “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539–541, 1990.
[2]  A. B. Holmes, D. D. C. Bradley, A. R. Brown, et al., “Photoluminescence and electroluminescence in conjugated polymeric systems,” Synthetic Metals, vol. 57, no. 1, pp. 4031–4040, 1993.
[3]  M. Berggren, O. Inganas, G. Gustafsson, et al., “Light emitting diodes with variable colours from polymer blends,” Nature, vol. 372, no. 6505, pp. 444–446, 1994.
[4]  G. Grem, G. Leditzky, B. Ullrich, and G. Leising, “Realization of a blue-light-emitting device using poly(p-phenylene),” Advanced Materials, vol. 4, no. 1, pp. 36–37, 1992.
[5]  C. Adachi, T. Tsutsui, and S. Saito, “Blue light-emitting organic electroluminescent devices,” Applied Physics Letters, vol. 56, no. 9, pp. 799–801, 1990.
[6]  J.-I. Lee, G. Klaerner, and R. D. Miller, “Oxidative stability and its effect on the photoluminescence of poly(fluorene) derivatives: end group effects,” Chemistry of Materials, vol. 11, no. 4, pp. 1083–1088, 1999.
[7]  Z. Peng and J. Zhang, “New oxadiazole-containing conjugated polymer for single-layer light-emitting diodes,” Chemistry of Materials, vol. 11, no. 4, pp. 1138–1143, 1999.
[8]  F.-C. Chen, G. He, and Y. Yang, “Triplet exciton confinement in phosphorescent polymer light-emitting diodes,” Applied Physics Letters, vol. 82, no. 7, pp. 1006–1008, 2003.
[9]  C. Adachi, R. C. Kwong, P. Djurovich, et al., “Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials,” Applied Physics Letters, vol. 79, no. 13, pp. 2082–2084, 2001.
[10]  R. J. Holmes, S. R. Forrest, Y.-J. Tung, et al., “Blue organic electrophosphorescence using exothermic host-guest energy transfer,” Applied Physics Letters, vol. 82, no. 15, pp. 2422–2424, 2003.
[11]  H.-J. Su, F.-I. Wu, C.-F. Shu, Y.-L. Tung, Y. Chi, and G.-H. Lee, “Polyfluorene containing diphenylquinoline pendants and their applications in organic light emitting diodes,” Journal of Polymer Science Part A, vol. 43, no. 4, pp. 859–869, 2005.
[12]  Z. Liu, Y. Zhang, Y. Hu, et al., “Novel bipolar light-emitting copolymer containing triazole and triphenylamine moieties,” Journal of Polymer Science Part A, vol. 40, no. 8, pp. 1122–1126, 2002.
[13]  F.-I. Wu, P.-I. Shih, C.-F. Shu, Y.-L. Tung, and Y. Chi, “Highly efficient light-emitting diodes based on fluorene copolymer consisting of triarylamine units in the main chain and oxadiazole pendent groups,” Macromolecules, vol. 38, no. 22, pp. 9028–9036, 2005.
[14]  X.-C. Li, Y. Liu, M. S. Liu, and A. K.-Y. Jen, “Synthesis, properties, and application of new luminescent polymers with both hole and electron injection abilities for light-emitting devices,” Chemistry of Materials, vol. 11, no. 6, pp. 1568–1575, 1999.
[15]  Z. Peng, Z. Bao, and M. E. Galvin, “Polymers with bipolar carrier transport abilities for light emitting diodes,” Chemistry of Materials, vol. 10, no. 8, pp. 2086–2090, 1998.
[16]  J. Lu, A. R. Hlil, Y. Sun, et al., “Synthesis and characterization of a blue light emitting polymer containing both hole and electron transporting units,” Chemistry of Materials, vol. 11, no. 9, pp. 2501–2507, 1999.
[17]  M. B. Casu, P. Imperia, S. Schrader, B. Schulz, M. Jandke, and P. Strohriegl, “Valence electronic structure of oxadiazoles and quinoxalines model compounds,” Synthetic Metals, vol. 121, no. 1–3, pp. 1397–1398, 2001.
[18]  V. Bugatti, S. Concilio, P. Iannelli, et al., “Synthesis and characterization of new electroluminescent molecules containing carbazole and oxadiazole units,” Synthetic Metals, vol. 156, no. 1, pp. 13–20, 2006.
[19]  D. Acierno, E. Amendola, S. Bellone, et al., “Synthesis and luminescent properties of a new class of nematic oxadiazole containing poly-ethers for PLED,” Journal of Non-Crystalline Solids, vol. 338–340, no. 1, pp. 278–282, 2004.
[20]  D. Acierno, S. Concilio, A. Diodati, P. Iannelli, S. P. Piotto, and P. Scarfato, “Synthesis and liquid crystalline properties of low molecular mass compounds containing the 1,4-bis (5-phenyl-1,3,4-oxadiazolyl) benzene unit,” Liquid Crystals, vol. 29, no. 11, pp. 1383–1392, 2002.
[21]  D. Acierno, E. Amendola, S. Bellone, et al., “Synthesis and characterization of a new class of nematic photoluminescent oxadiazole-containing polyethers,” Macromolecules, vol. 36, no. 17, pp. 6410–6415, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133