全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Situ Swelling Behavior of Chitosan-Polygalacturonic Acid/Hydroxyapatite Nanocomposites in Cell Culture Media

DOI: 10.1155/2010/175264

Full-Text   Cite this paper   Add to My Lib

Abstract:

The molecular and mechanical characteristics of in situ degradation behavior of chitosan-polygalacturonic acid/hydroxyapatite (Chi-PgA-HAP) nanocomposite films is investigated using Fourier Transform Infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM), and modulus mapping techniques for up to 48 days of soaking in cell culture media. The surface molecular structure of media-soaked samples changes over the course of 48 days of soaking, as indicated by significant changes in phosphate vibrations (1200–900? ) indicating apatite formation. Chitosan-Polygalacturonic acid polyelectrolyte complexes (PECs) govern structural integrity of Chi-PgA-HAP nanocomposites and FTIR spectra indicate that PECs remain intact until 48 days of soaking. In situ AFM experiments on media-soaked samples indicate that soaking results in a change in topography and swelling proceeds differently at the initial soaking periods of about 8 days than for longer soaking. In situ modulus mapping experiments are done on soaked samples by probing 1–3?nm of surface indicating elastic moduli of 4?GPa resulting from proteins adsorbed on Chi-PgA-HAP nanocomposites. The elastic modulus decreases by 2?GPa over a long exposure to cell culture media (48 days). Thus, as water enters the Chi-PgA-HAP sample, surface molecular interactions in Chi-PgA-HAP structure occur that result in swelling, causing small changes in nanoscale mechanical properties. 1. Introduction Recent developments in design of novel polymeric biomaterials have allowed researchers to confront many of the challenges dealing with the design of novel biomaterials. The tremendous potential of biodegradable polymers for tissue engineering and medical devices results from their biocompatibility, ease in processing, and capability of controlled degradation in response to biological environment. Candidate materials for bone tissueengineering include natural polymers (chitosan, collagen, hyaluronan, fibrin), synthetic polymers (polycaprolactone, polylactic acid, polyglycolic acid, and their copolymers) and inorganic materials (tricalcium phosphate, hydroxyapatite). Also, the natural biodegradable and biofunctional biopolymer, chitosan, has been considered as a potential candidate material for numerous biomedical applications including controlled drug release [1, 2], wound dressing [3], and more recently, for tissue engineering application [4–13]. Chitosan [ (1,4)-linked 2-amino-2-deoxy-D glucan] is a cationic polysaccharide obtained by N-acetylation of chitin. Chitosan provides improved cell attachment, since the polysaccharide

References

[1]  S. Miyazaki, K. Ishii, and T. Nadai, “The use of chitin and chitosan as drug carriers,” Chemical & Pharmaceutical Bulletin, vol. 29, no. 10, pp. 3067–3069, 1981.
[2]  K. Aiedeh, E. Gianasi, I. Orienti, and V. Zecchi, “Chitosan microcapsules as controlled release systems for insulin,” Journal of Microencapsulation, vol. 14, no. 5, pp. 567–576, 1997.
[3]  G. Kratz, C. Arnander, J. Swedenborg, et al., “Heparin-chitosan complexes stimulate wound healing in human skin,” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, vol. 31, no. 2, pp. 119–123, 1997.
[4]  S. V. Madihally and H. W. T. Matthew, “Porous chitosan scaffolds for tissue engineering,” Biomaterials, vol. 20, no. 12, pp. 1133–1142, 1999.
[5]  W.-C. Hsieh, C.-P. Chang, and S.-M. Lin, “Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering,” Colloids and Surfaces B, vol. 57, no. 2, pp. 250–255, 2007.
[6]  Y. Wan, H. Wu, and D. Wen, “Porous-conductive chitosan scaffolds for tissue engineering, 1: preparation and characterization,” Macromolecular Bioscience, vol. 4, no. 9, pp. 882–890, 2004.
[7]  J. Nakamatsu, F. G. Torres, O. P. Troncoso, M. L. Yuan, and A. R. Boccaccini, “Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds,” Biomacromolecules, vol. 7, no. 12, pp. 3345–3355, 2006.
[8]  A. Wang, Q. Ao, W. Cao, et al., “Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering,” Journal of Biomedical Materials Research Part A, vol. 79, no. 1, pp. 36–46, 2006.
[9]  L. Peng, X. R. Cheng, J. W. Wang, D. X. Xu, and G. Wang, “Preparation and evaluation of porous chitosan/collagen scaffolds for periodontal tissue engineering,” Journal of Bioactive and Compatible Polymers, vol. 21, no. 3, pp. 207–220, 2006.
[10]  Y. Wan, A. X. Yu, H. Wu, Z. X. Wang, and D. J. Wen, “Porous-conductive chitosan scaffolds for tissue engineering II. In vitro and in vivo degradation,” Journal of Materials Science: Materials in Medicine, vol. 16, no. 11, pp. 1017–1028, 2005.
[11]  H. F. Liu, F. L. Yao, Y. Zhou, et al., “Porous poly (DL-lactic acid) modified chitosan-gelatin scaffolds for tissue engineering,” Journal of Biomaterials Applications, vol. 19, no. 4, pp. 303–322, 2005.
[12]  L. Ma, C. Y. Gao, Z. W. Mao, et al., “Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering,” Biomaterials, vol. 24, no. 26, pp. 4833–4841, 2003.
[13]  J. Yang, T. W. Chung, M. Nagaoka, M. Goto, C.-S. Cho, and T. Akaike, “Hepatocyte-specific porous polymer-scaffolds of alginate/galactosylated chitosan sponge for liver-tissue engineering,” Biotechnology Letters, vol. 23, no. 17, pp. 1385–1389, 2001.
[14]  E. Khor and L. Y. Lim, “Implantable applications of chitin and chitosan,” Biomaterials, vol. 24, no. 13, pp. 2339–2349, 2003.
[15]  S. Dumitriu and E. Chornet, “Inclusion and release of proteins from polysaccharide-based polyion complexes,” Advanced Drug Delivery Reviews, vol. 31, no. 3, pp. 223–246, 1998.
[16]  C. Peniche and W. Arguelles-Monal, “Chitosan based polyelectrolyte complexes,” Macromolecular Symposia, vol. 168, pp. 103–116, 2001.
[17]  W. G. T. Willats, P. Knox, and J. D. Mikkelsen, “Pectin: new insights into an old polymer are starting to gel,” Trends in Food Science & Technology, vol. 17, no. 3, pp. 97–104, 2006.
[18]  P. Bernabé, C. Peniche, and W. Argüelles-Monal, “Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking,” Polymer Bulletin, vol. 55, no. 5, pp. 367–375, 2005.
[19]  L. S. Liu, M. L. Fishman, J. Kost, and K. B. Hicks, “Pectin-based systems for colon-specific drug delivery via oral route,” Biomaterials, vol. 24, no. 19, pp. 3333–3343, 2003.
[20]  F. Zhao, W. L. Grayson, T. Ma, B. Bunnell, and W. W. Lu, “Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development,” Biomaterials, vol. 27, no. 9, pp. 1859–1867, 2006.
[21]  B. Q. Li, Q. L. Hu, X. Z. Qian, Z. P. Fang, and J. C. Shen, “Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture,” Acta Polymerica Sinica, no. 6, pp. 828–833, 2002.
[22]  W. Y. Xia, W. Liu, L. Cui, et al., “Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds,” Journal of Biomedical Materials Research Part B, vol. 71, no. 2, pp. 373–380, 2004.
[23]  V. Chiono, E. Pulieri, G. Vozzi, G. Ciardelli, A. Ahluwalia, and P. Giusti, “Genipin-crosslinked chitosan/gelatin blends for biomedical applications,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 2, pp. 889–898, 2008.
[24]  Z. S. Li, H. R. Ramay, K. D. Hauch, D. M. Xiao, and M. Q. Zhang, “Chitosan-alginate hybrid scaffolds for bone tissue engineering,” Biomaterials, vol. 26, no. 18, pp. 3919–3928, 2005.
[25]  D. Verma, K. S. Katti, D. R. Katti, and B. Mohanty, “Mechanical response and multilevel structure of biomimetic hydroxyapatite/polygalacturonic/chitosan nanocomposites,” Materials Science and Engineering C, vol. 28, no. 3, pp. 399–405, 2008.
[26]  D. Verma, K. S. Katti, and D. R. Katti, “Effect of biopolymers on structure of hydroxyapatite and interfacial interactions in biomimetically synthesized hydroxyapatite/biopolymer nanocomposites,” Annals of Biomedical Engineering, vol. 36, no. 6, pp. 1024–1032, 2008.
[27]  D. Verma, K. S. Katti, and D. R. Katti, “Osteoblast adhesion, proliferation and growth on polyelectrolyte-complex-hydroxyapatite nanocomposites,” Philosophical Transactions. Series A, vol. 368, no. 1917, pp. 2083–2097, 2010.
[28]  M.-W. Lee, C.-L. Hung, J.-C. Cheng, and Y.-J. Wang, “A new anti-adhesion film synthesized from polygalacturonic acid with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide crosslinker,” Biomaterials, vol. 26, no. 18, pp. 3793–3799, 2005.
[29]  W. Argüelles-Monal, O. L. Hechavarría, L. Rodríguez, and C. Peniche, “Swelling of membranes from the polyelectrolyte complex between chitosan and carboxymethyl cellulose,” Polymer Bulletin, vol. 31, no. 4, pp. 471–478, 1993.
[30]  S. M. Lim, D. K. Song, S. H. Oh, D. S. Lee-Yoon, E. H. Bae, and J. H. Lee, “In vitro and in vivo degradation behavior of acetylated chitosan porous beads,” Journal of Biomaterials Science, Polymer Edition, vol. 19, no. 4, pp. 453–466, 2008.
[31]  W. Tachaboonyakiat, T. Serizawa, and M. Akashi, “Inorganic-organic polymer hybrid scaffold for tissue engineering—II: partial enzymatic degradation of hydroxyapatite-chitosan hybrid,” Journal of Biomaterials Science, Polymer Edition, vol. 13, no. 9, pp. 1021–1032, 2002.
[32]  K. Tomihata and Y. Ikada, “In vitro and in vivo degradation of films of chitin and its deacetylated derivatives,” Biomaterials, vol. 18, no. 7, pp. 567–575, 1997.
[33]  S. Hirano, H. Tsuchida, and N. Nagao, “N-acetylation in chitosan and the rate of its enzymic hydrolysis,” Biomaterials, vol. 10, no. 8, pp. 574–576, 1989.
[34]  W. L. Cao, M. Y. Cheng, Q. Ao, Y. D. Gong, N. M. Zhao, and X. F. Zhang, “Physical, mechanical and degradation properties, and schwann cell affinity of cross-linked chitosan films,” Journal of Biomaterials Science, Polymer Edition, vol. 16, no. 6, pp. 791–807, 2005.
[35]  D. W. Ren, H. F. Yi, W. Wang, and X. J. Ma, “The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation,” Carbohydrate Research, vol. 340, no. 15, pp. 2403–2410, 2005.
[36]  A. Cárdenas, W. Argüelles-Monal, F. M. Goycoolea, I. Higuera-Ciapara, and C. Peniche, “Diffusion through membranes of the polyelectrolyte complex of chitosan and alginate,” Macromolecular Bioscience, vol. 3, no. 10, pp. 535–539, 2003.
[37]  J. R. R. de Souza, J. I. X. de Carvalho, M. T. S. Trevisan, R. C. M. de Paula, N. Ricardo, and J. P. A. Feitosa, “Chitosan-coated pectin beads: characterization and in vitro release of mangiferin,” Food Hydrocolloids, vol. 23, no. 8, pp. 2278–2286, 2009.
[38]  K. D. Yao, H. L. Tu, F. Cheng, J. W. Zhang, and J. Liu, “pH-sensitivity of the swelling of a chitosan-pectin polyelectrolyte complex,” Angewandte Makromolekulare Chemie, vol. 245, pp. 63–72, 1997.
[39]  G. Balooch, G. W. Marshall, S. J. Marshall, O. L. Warren, S. A. S. Asif, and M. Balooch, “Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth,” Journal of Biomechanics, vol. 37, no. 8, pp. 1223–1232, 2004.
[40]  R. Khanna, K. S. Katti, and D. R. Katti, “Nanomechanics of surface modified nanohydroxyapatite particulates used in biomaterials,” Journal of Engineering Mechanics, vol. 135, no. 5, pp. 468–478, 2009.
[41]  K. S. Katti, P. Turlapati, D. Verma, R. Bhowmik, P. K. Gujjula, and D. R. Katti, “Static and dynamic mechanical behavior of hydroxyapatite-polyacrylic acid composites under simulated body fluid,” American Journal of Biochemistry and Biotechnology, vol. 2, no. 2, pp. 73–79, 2006.
[42]  S. A. S. Asif, K. J. Wahl, R. J. Colton, and O. L. Warren, “Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation,” Journal of Applied Physics, vol. 90, no. 3, pp. 1192–1200, 2001.
[43]  K. Kato, Y. Eika, and Y. Ikada, “In situ hydroxyapatite crystallization for the formation of hydroxyapatite/polymer composites,” Journal of Materials Science, vol. 32, no. 20, pp. 5533–5543, 1997.
[44]  F. Bigucci, B. Luppi, T. Cerchiara, et al., “Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin,” European Journal of Pharmaceutical Sciences, vol. 35, no. 5, pp. 435–441, 2008.
[45]  D. Verma, K. Katti, and D. Katti, “Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy,” Journal of Biomedical Materials Research Part A, vol. 77, no. 1, pp. 59–66, 2006.
[46]  W. W. Thein-Han and R. D. K. Misra, “Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering,” Acta Biomaterialia, vol. 5, no. 4, pp. 1182–1197, 2009.
[47]  H. P. Wampler and A. Ivanisevic, “Nanoindentation of gold nanoparticles functionalized with proteins,” Micron, vol. 40, no. 4, pp. 444–448, 2009.
[48]  J.-Y. Rho and G. M. Pharr, “Effects of drying on the mechanical properties of bovine femur measured by nanoindentation,” Journal of Materials Science: Materials in Medicine, vol. 10, no. 8, pp. 485–488, 1999.
[49]  S. Hengsberger, A. Kulik, and Ph. Zysset, “Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions,” Bone, vol. 30, no. 1, pp. 178–184, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133