Coque M,Gallais A.Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize[J].Theoretical and Applied Genetics,2006,112:1205-1220.
[15]
Chardon F,Barthélémy J,Daniel-Vedele F,et al.Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply[J].Journal of Experimental Botany,2010,61:2293-2302.
[16]
Liu X J,Ju X T,Zhang Y,et al.Nitrogen deposition in agroecosystems in the Beijing area[J].Agriculture,Ecosystems and Environment,2006,113:370-377.
[17]
Food and Agriculture Organization.FAO statistical databases,agriculture date[EB/OL].http://faostat.fao.org/faostat.2005.
Zhang H,Forde B G.An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J].Science,1998,279:407-409.
[20]
Xu G H,Fan X R,Anthony J M.Plant nitrogen assimilation and use efficiency[J].Annual Review of Plant Biology,2012,63:153-182.
[21]
Bi Y M,Kant S,Clark J,et al.Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling[J].Plant Cell and Environment,2009,32:1749-1760.
[22]
Wang Y Y,Hsu P K,Tsay Y F.Uptake,allocation and signaling of nitrate[J].Trends in Plant Science,2012,17(8):458-467.
[23]
Feng H,Yan M,Fan X,et al.Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J].Journal of Experimental Botany,2011,62:2319-2332.
[24]
Lam H M,Coschigano K,Oliveira I C,et al.The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J].Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:569-593.
[25]
Gojon A,Krouk G,Perrine W F,et al.Nitrate transceptor(s)in plants[J].Journal of Experimental Botany,2011,62:2299-2308.
[26]
Dechorgnat J,Nguyen C T,Armengaud P,et al.From the soil to the seeds:the long journey of nitrate in plants[J].Journal of Experimental Botany,2011,62:1349-1359.
[27]
Liu K H,Huang C Y,Tsay Y F.CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake[J].The Plant Cell,1999,11(5):865-874.
[28]
Ho C H,Lin S H,Hu H C,et al.CHL1 functions as a nitrate sensor in plants[J].Cell,2009,138:1184-1194.
[29]
Huang N C,Liu K H,Lo H J,et al.Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake[J].The Plant Cell,1999,11(8):1381-1392.
[30]
Okamoto M,Vidmar J J,Glass A D M.Regulation of NRT 1 and NRT 2 gene families of Arabidopsis thaliana:Responses to nitrate provision[J].Plant and Cell Physiology,2003,44(3):304-317.
[31]
Fan S C,Lin C S,Hsu P,et al.The Arabidopsis nitrate transporter NRT 1.7,expressed in phloem,is responsible for source-to-sink remobilization of nitrate[J].The Plant Cell,2009,21(9):2750-2761.
[32]
Weichert A,Brinkmann C,Komarova N,et al.AtPTR 4 and AtPTR 6 are differentially expressed,tonoplast-localized members of the peptide transporter/nitrate transporter 1(PTR/NRT1)family[J].Planta,2012,235:311-323.
[33]
Dietrich D,Hammes U,Thor K.AtPTR 1,a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis[J].The PlantJournal,2004,40:488-499.
[34]
Song W,Koh S,Czako M,et al.Antisense express ion of the peptide transport gene AtPTR2-B delays flowering and arrests seed development in transgenic Arabidopsis plants[J].Plant Physiology,1997,114(3):927-935.
[35]
Komarova N Y,Thor K,Gubler A,et al.AtPTR1 and AtPTR5 transport dipeptides in planta[J].Plant Physiology,2008,148:856-869.
[36]
Plett D,Toubia J,Garnett T,et al.Dichotomy in the NRT gene families of dicots and grass species[J].PLoS ONE,2010,5:e15289.
[37]
Yan M,Fan X R,Feng H M,et al.Rice OsNAR 2.1 interacts with OsNRT 2.1,OsNRT 2.2 and OsNRT 2.3a nitrate transporters to provide uptake over high and low concentration ranges[J].The Plant Cell and Environment,2011,34:1360-1372.
[38]
Orsel M,Filleur S,Fraisier V,et al.Nitrate transport in plants:which gene and which control?[J].Journal of Experimental Botany,2002,53:825-833.
[39]
Kiba T,Feria-Bourrellier A B,Lafouge F,et al.The Arabidopsis nitrate transporter NRT 2.4 plays a double role in roots and shoots of nitrogen-starved plants[J].Plant Cell,2012,24(1):245-258.
[40]
Chopin F,Orsel M,Dorbe M F,et al.The Arabidopsis ATNRT 2.7 nitrate transporter controls nitrate content in seeds[J].The Plant Cell,2007,19:1590-1602.
[41]
Little D Y,Rao H,Oliva S,et al.The putative high-affinity nitrate transporter NRT 2.1 represses lateral root initiation in response to nutritional cues[J].Procedins of the National Academy of Science of the United States of America,2005,102(38):13693-13698.
[42]
Wang R,Okamoto M,Xing X,et al.Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose,trehalose-6-phosphate,iron,and sulfate metabolism[J].Plant Physiology,2003,132:556-567.
[43]
Okamoto M,Kumar A,Li W,et al.High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR 2-Like gene AtNRT 3.1[J].Plant Physiology,2006,140(3):1036-1046.
[44]
Krouk G,Lacombe B,Bielach A,et al.Nitrate-regulated auxin transport by NRT 1.1 defines a mechanism for nutrient sensing in plants[J].Development Cell,2010,18(6):927-937.
[45]
Garnett T,Conn V,Kaiser B N.Root based approaches to improving nitrogen use efficiency in plants[J].Plant Cell and Environment,2009,32:1272-1283.
[46]
Filleur S,Daniel-Vedele F.Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display[J].Planta,1999,207(3):461-469.
[47]
Cerezo M,Tillard P,Filleur S,et al.Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt 2.1 and Nrt 2.2 genes in Arabidopsis[J].Plant Physiology,2001,127:262-271.
[48]
Okamoto M,Vidmar J J,Glass A D M.Regulation of NRT 1 and NRT 2 gene families of Arabidopsis thaliana:responses to nitrate provision[J].Plant and Cell Physiology,2003,44(3):304-317.
[49]
Masclaux-Daubresse C,Chardon F.Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana[J].Journal of Experimental Botany,2011,62:2131-2142.
Ju X T,Kou C L,Zhang F S,et al.Nitrogen balance and groundwater nitrate contamination:Comparison among three intensive cropping systems on the North China Plain[J].Environmental Pollution,2006,143(1):117-125.