[1] Berkdemir C. Pseudospin symmetry in the relativistic Morse potential including the spin?orbit coupling term[J].?Nucl Phys A,?2006,770(1):32-39.?
[2]
[2]Qiang W C, Zhou R S, Gao Y. Application of the exact quantization rule to the relativistic solution of the rotational Morse potential with pseudospin symmetry[J].?J Phys A: Math Theor,?2007(40):1677-1685.?
[3]
[3]Jia C S, Guo P, Diao Y F,et al. Solutions of Dirac equations with the P?chl?Teller potential[J].?J Eur Phys J A,?2007,34(1):41-48.?
[4]
[4] Jia C S, Guo P, Peng X L. Exact solution of the Dirac?Eckart problem with spin and pseudospin symmetry[J].??J Phys? A: Math Gen,?2006,39(24):7737-7744.?
[8]Guo J Y, Sheng Z Q. Solution of the Dirac equation for the Woods?Saxon potential with spin and pseudospin symmetry[J].?Physics Lett A,?2005,338(2):90-96.?
[9]
[9]Karmadeva M. Symmetry analysis for a charged particle in a certain varying magnetic field[J].?Preprint Math?Ph:?0306069.?
[10]
[10]Setare M R, Olfati G. An algebraic approach for a charged particle in a certain magnetic field[J].?Physica Scripta,?2007,75(3):250-252.?
[11]
[11]Setare M R, Hatami O. Exact solutions of the Dirac equation for an electron in a magnetic field with shape invariant method[J].?Chin Phys Lett,?2008,25(11):3848-3851.?
[12]
[12]Nikiforov A F, Uvarov V B. ?Special functions of mathematical physics?[M].Basel: Birkhauser,1988:15-420.?
[13]
[13]Ikhdair S M. Approximate eigenvalue and eigenfunction solutions for the generalized Hulthen potential with any angular momentum[J].?J Math Chem,?2007,42(3):461-471.?
[14]
[14]Berkdemir C, Berkdemir A , Sever R. Polynomial solutions of the Schr?dinger equation for the generalized Woods-Saxon potential[J].?Phys Rev C,?2005,72:027001.1-4.?
[15]
[15]Greiner W. ?Relativistic quantum mechanics?[M].Berlin: Springer,2000:99-103.?
[16]
[16]Grainer W, M?uller B, Rafelski J. ?Quantum electrodynamics of strong fields?[M].Berlin: Springer,1985:95-226.