全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

相对论情况下N?U方法求解电磁场中运动粒子的Dirac方程的束缚态

, PP. 35-39

Keywords: 磁场,N?U方法,Dirac方程,束缚态

Full-Text   Cite this paper   Add to My Lib

Abstract:

在相对论情况下,通过N-U方法求解电磁场中运动粒子的Dirac方程的束缚态解,并给出相应的束缚态能谱和相对论性的波函数.所得的结果与其他方法一致.?

References

[1]  [1] Berkdemir C. Pseudospin symmetry in the relativistic Morse potential including the spin?orbit coupling term[J].?Nucl Phys A,?2006,770(1):32-39.?
[2]  [2]Qiang W C, Zhou R S, Gao Y. Application of the exact quantization rule to the relativistic solution of the rotational Morse potential with pseudospin symmetry[J].?J Phys A: Math Theor,?2007(40):1677-1685.?
[3]  [3]Jia C S, Guo P, Diao Y F,et al. Solutions of Dirac equations with the P?chl?Teller potential[J].?J Eur Phys J A,?2007,34(1):41-48.?
[4]  [4] Jia C S, Guo P, Peng X L. Exact solution of the Dirac?Eckart problem with spin and pseudospin symmetry[J].??J Phys? A: Math Gen,?2006,39(24):7737-7744.?
[5]  [5]胡嗣柱,苏汝铿.具有Hulthen型势的Dirac方程的束缚态[J].物理学报,1991,40(80):1201-1206.?
[6]  [6]候春风,李炎,周忠祥.具有Morse型标量势与矢量势的Klein?Gorden方程和Dirac方程的束缚态[J].物理学报,1999,48(11):1999-2001.?
[7]  [7]陈刚.具有P?chl?Teller型标量势与矢量势的Klein?Gorden方程和Dirac方程的束缚态解[J].物理学报,2001,50(7):1651-1653.?
[8]  [8]Guo J Y, Sheng Z Q. Solution of the Dirac equation for the Woods?Saxon potential with spin and pseudospin symmetry[J].?Physics Lett A,?2005,338(2):90-96.?
[9]  [9]Karmadeva M. Symmetry analysis for a charged particle in a certain varying magnetic field[J].?Preprint Math?Ph:?0306069.?
[10]  [10]Setare M R, Olfati G. An algebraic approach for a charged particle in a certain magnetic field[J].?Physica Scripta,?2007,75(3):250-252.?
[11]  [11]Setare M R, Hatami O. Exact solutions of the Dirac equation for an electron in a magnetic field with shape invariant method[J].?Chin Phys Lett,?2008,25(11):3848-3851.?
[12]  [12]Nikiforov A F, Uvarov V B. ?Special functions of mathematical physics?[M].Basel: Birkhauser,1988:15-420.?
[13]  [13]Ikhdair S M. Approximate eigenvalue and eigenfunction solutions for the generalized Hulthen potential with any angular momentum[J].?J Math Chem,?2007,42(3):461-471.?
[14]  [14]Berkdemir C, Berkdemir A , Sever R. Polynomial solutions of the Schr?dinger equation for the generalized Woods-Saxon potential[J].?Phys Rev C,?2005,72:027001.1-4.?
[15]  [15]Greiner W. ?Relativistic quantum mechanics?[M].Berlin: Springer,2000:99-103.?
[16]  [16]Grainer W, M?uller B, Rafelski J. ?Quantum electrodynamics of strong fields?[M].Berlin: Springer,1985:95-226.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133