全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

预处理Hermitian和skew?Hermitian分裂迭代法

, PP. 16-20

Keywords: 非Hermitian正定矩阵,Hermitian和skew?Hermitian分裂,预处理因子,迭代法

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于系数矩阵为大型稀疏非Hermitian正定线性方程组,白中治、Golub和Ng提出了Hermitian和skew-Hermitian分裂迭代法(HSS).该论文提出一种预处理Hermitian和skew-Hermitian分裂迭代法(PHSS).理论分析该法收敛于线性方程组的唯一解.

References

[1]  [1]Bai Z Z, Golub G H, Ng M K. Hermitian and skew?Hermitian splitting methods for non-Hermitian positive definite linear systems[J].?Siam J Matrix Anal,?2003,24(3):603-626.?
[2]  [2]Golub G H, Wathen A J. An iteration for indefinite systems and its application to the Navier?stokesequations[J].?Siam J Sci Comput,?1998,19(2):530-539.?
[3]  [3]Wang C L, Bai Z Z. Sufficient conditions for the convergent split tings of non?Hermitian positive definite matrices[J].?Linear Algebra Appl,?2001,330(1-3):215-218.?
[4]  [4]Eiermann M, Niethammer W, Varga R S. Acceleration of relaxation methods for non?Hermitian linear systems[J].?Siam J Matrix Anal,?1992,13(3):979-991.?
[5]  [5]Golub G H, Vanderstracten D. On the preconditioning of matrices with a dominant skew?symmetric component[J].?Numer Algorithms,?2000,25(1):223-239.?
[6]  [6]Widlund O B. A Lanczos method for a class of nonsymmetrical systems of linear equations[J].?SIAM J Numer Anal,?1978,15(4):801-812.?
[7]  [7]Golub G H, van Loan C F. ?Matrix computations?[M]. 3rd ed. London: the Johns Hopkins University Press,1996.?
[8]  [8]Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J].?Siam J Sci Stat Comput,?1986,7(3):856-869.?
[9]  [9]Saad Y, Henk A, van der Vorst. Iterative solution of linear systems in the 20th century[J].?J Comput Appl,?2000,123(1-2):1-33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133