全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细胞黏附斑边值问题不是反问题

Keywords: 细胞黏附斑,边值问题,反问题,正问题,解析解,数值解

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞黏附斑边界的位移场可以借助纳米技术测量,进而由此确定黏附斑域内应力场.目前这一领域的研究者普遍将这后一步骤当作"反问题"去处理.作者将求位移边值问题的解析方法和数值方法,用于确定细胞黏附斑域内应力场,证明它是正问题,而不是反问题.并给出用复变函数方法求解,得到圆形、椭圆形和多角形单黏附斑问题的精确分析解.阐述了对于多黏附斑问题和任意形状多黏附斑问题,无论是连续或离散位移边界条件,用边界积分方程-边界元方法求解,确定细胞黏附斑域内应力场也是正问题,而不是反问题.

References

[1]  Rizzo F J,An integral equation approach to boundary value problems of classical elastostatics,Quarterly of Applied Mathematics,1967.
[2]  Dembo M,Wang Y L,Stresses at the cell-to-substrate interface during locomotion of fibroblast,Biophysical Journal,1999.
[3]  Schwarz U S,Balaban N G,Riveline D,Calculation of forces at focal adhesions from elastic substrte data,Biophysical Journal,2002.
[4]  Merkel R,Kirchgessner N,Cesa C M,Cell force microscopy on elastic layers of finite thickness,Biophysical Journal,2007.
[5]  Sabass B,Garde M L,Waterman C M,High resolution traction force based on experimental and computational advances,Biophysical Journal,2008.
[6]  Ambrosi D,Cellular traction as an inverse problem,SIAM Journal of Applied Mathematics,2006.
[7]  Ambrosi D,Duperray A,Peschetola V,Traction patterns ot tumor cells,Journal of Mathematical Biology,2009.
[8]  Bischofs I B,Schmidt S S,Schwarz U S,Effect of geometry and rigidity on cellular force distributions,Physical Review Letters,2009.
[9]  Muskhelishvili N I,Some basic problems of mathematical theory of elasticity,Noordhoff:Groningen,1953.
[10]  Fan T Y,Hahn H G,Tenihneff D,The boundary integral equations method in static and dynamic fracture mechanicscomputer realization,illustrated examples and comments,北京工业大学学报,1984(3).
[11]  Fan T Y,Hahn H G,An application of boundary integral equationsmethod to fracture dynamics,Engineering Fracture Mechanics,1985.
[12]  Fan T Y,Fan L,Direct methods for focal adhesions of cell locomotion,2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133