全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

汽车减振器橡胶连接件动态特性实验研究

Keywords: 减震器,橡胶-钢零件,迟滞回线分解,阻尼,能量法

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究麦弗逊悬架中橡胶连接零件对悬架系统的影响,对其动态特性进行数学建模.基于实验数据,建立合适的数学模型,采用双折线恢复力模型拟合迟滞回线,将恢复力分解为1次和3次弹性恢复力、1次黏性项和双折线恢复力3个部分,基于能量法对各项参数分批进行识别.通过对实验数据的分析,得出了各项系数与频率、振幅的关系曲线,并研究了频率、振幅对各项系数的影响.结果表明,随着频率的增加,阻尼系数逐渐减小;1次弹性系数随着振幅的增加而增大,3次弹性系数随着振幅的增加而减小.

References

[1]  林逸,陈欣,王望予.独立悬架中橡胶减震元件对汽车性能的影响[J].吉林工业大学学报,1993,23:18-26.Lin Yi, Chen Xin, Wang Wangyu. The influence of rubber elements in independent suspension on vehicle performance[J]. Journal of Jilin University of Technology, 1993,23:18-26. (in Chinese)
[2]  龚宪生,谢志江.非线性隔振器阻尼特性研究[J].振动工程学报,2001,914:334-338.Gong Xiansheng, Xie Zhijiang. The characteristics of a nonlinear damper for vibration isolation[J]. Journal of Vibration Engineering, 2001,914:334-338. (in Chinese)
[3]  Berg M. A model for rubber springs in the dynamic analysis of rail vehicle[J]. Journal of Rail and Rapid Transit, 1997,211:95-108.
[4]  Masri S F. Forced vibration of the damped bilinear hysteretic oscillator[J]. The Acoustical Society of America, 1975,57(1):106-112.
[5]  Baber T T, Voor M N. Random vibration of hysteretic degrading systems, ASCE[J]. The Engineering Mechanics Division, 1982,107:1069-1089.
[6]  Badrakhan F. Rational study of hysteretic systems under stationary random excitation[J]. Int Nonlinear Mech, 1987,22(4):312-315.
[7]  弗雷克利P K,佩恩A R.橡胶在工程中应用的理论与实践[M]. 杜承泽,译.北京:化学工业出版社,1985:34-50. Freakley F K, Payne A R. Theory and practice of engineering with rubber[M]. Du Chengze, transl. Beijing: Chemical Industry Press, 1985:34-50. (in Chinese)
[8]  胡海岩,李岳峰.具有记忆特性的非线性减振器参数识别[J].振动工程学报,1989,2(2):17-26. Hu Haiyan, Li Yuefeng. Parametric identification of nonlinear vibration isolators with memory[J]. Journal of Vibration Engineering, 1989,2(2):17-26. (in Chinese)
[9]  路纯红,白鸿柏,胡仁喜.金属橡胶/橡胶复合叠层耗能器动力学模型[J].振动工程学报,2008,21(5):493-497. Lu Chunhong, Bai Hongbai, Hu Renxi. Dynamic model of metal rubber/steel composite laminated damper[J]. Journal of Vibration Engineering, 2008,21(5):493-497. (in Chinese)
[10]  李岳峰,胡海岩.非线性系统参数识别的能量法[J].振动工程学报,1991,3(5):34-40. Li Yuefeng, Hu Haiyan. Parametric identification of nonlinear systems based on energy analysis[J]. Journal of Vibration Engineering, 1991,3(5):34-40. (in Chinese)
[11]  魏木生.广义最小二乘问题的理论和计算[M].北京:科学出版社,2006:22-80.Wei Musheng. Theory and calculate of generalized least square method[M]. Beijing: Science Press. 2006:22 80. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133