Kim U J, Park J, Kim H J, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin[J]. Biomaterials, 2005,26(15):2775-2785.
[2]
Asakura T, Kuzuhara A, Tabeta R, et al. Conformation characterization of bombyx mori silk fibroin in the solid state by high-frequency 13C cross polarization-magic angle spinning NMR, X-ray diffraction, and infrared spectroscopy[J]. Macrom-olecules, 1985,18:1841-1845.
[3]
Harris L D, Kim B S, Mooney D J. Open pore biodegradable matrices formed with gas foaming[J]. Biomed Mater Res, 1998,42:396-402.
[4]
Minoura N, Aiba S, Higuchi M, et al. Attachment and growth of fibroblast cells on silk fibroin[J]. Biochem Biophys Res Commun, 1995,208(2):511-516.
[5]
Minoura N, Aiba S, Gotoh Y, et al. Attachment and growth of cultured fibroblast cells on silk protein matrices[J]. Biomed Mater Res, 1995,29(10):1215-1221.
[6]
Gotoh Y, Tsukada M, Minoura N, et al. Effect of the chemical modification of the arginyl residue in bombyx mori silk fibroin on the attachment and growth of fibroblast cells[J]. Biomed Mater Res, 1998,39(3):351-357.
[7]
Inouye K, Kurokawa M, Nishikawa S, et al. Use of bombyx mori silk fibroin as a substratum for cultivation of animal cells[J]. Biochem Biophys Methods, 1998,37(3):159-164.
[8]
Pierschbacher M D, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule[J]. Nature, 1984,309:30-33.
[9]
Pierschbacher M D, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity[J]. Proc Natl Acad Sci USA, 1984,81(19):5985-5988.
[10]
Ruoslahti E, Pierschbacher M D. New perspectives in cell adhesion: RGD and integrins[J]. Science, 1987,238:491-497.