全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于时空视频块的背景建模

Keywords: 背景建模,时空视频块,子空间学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于时空视频块的背景建模方法,时空视频块同时包含空间表观信息和时间运动信息.一个给定的背景位置在所有可能光照条件下的时空视频块集中位于一个低维的背景子空间中,而运动前景的时空视频块散布在背景子空间外的整个高维视频块空间中,采用一种高效的在线子空间学习算法实时更新背景子空间的主成分,根据时空视频块到背景子空间的距离来区分背景时空视频块和前景时空视频块.实验结果显示,本文中提出的方法能够在光照剧烈变化、前景与背景对比度较低的情况下准确地检测出前景目标.

References

[1]  Piccardi M. Background subtraction techniques: a review [C]//IEEE International Conference on Systems, Man and Cybernetics. The Hague, The Netherlands: [s.n.], 2004:3099-3104.
[2]  Elhabian S, El-Sayed K, Ahmed S. Moving object detection in spatial domain using background removal techniques-state-of-art[J]. Recent Patents on Computer Science, 2008,1(1):32-54.
[3]  Bouwmans T. Subspace learning for background modeling: a survey[J]. Recent Patents on Computer Science, 2009,2(3):223-234.
[4]  Wren C, Azarbayejani A, Darrell T, et al. Real-time tracking of the human body[J]. IEEE Trans on Pattern Anal Machine Intell, 1997,19:780-785.
[5]  Stauffer C, Eric W, Grimson W E L. Learning patterns of activity using real-time tracking[J]. IEEE Trans on Pattern Anal Machine Intell, 2000,22:747-757.
[6]  Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density for visual surveillance[J]. Proceedings of the IEEE, 2002,90:1151-1163.
[7]  Seki M, Wada T, Fujiwara H, et al. Background subtraction based on cooccurrence of image variations[C]//IEEE Conference on Computer Vision and Pattern Recognition. Madison, Wisconsin, USA:[s.n.],2003:Ⅱ-65-Ⅱ-72.
[8]  Heikkila M, Pietikainen M.A texture-based method for modeling the background and detecting moving objects[J]. IEEE Trans on Pattern Anal Machine Intell, 2006,28(4):657-662.
[9]  Lin H H, Liu Y L, Chuang J H. Learning a scene background model via classification[J]. IEEE Trans on Signal Processing, 2009,57(5):1641-1654.
[10]  Monnet A, Mittal A, Paragios N, et al. Background modeling and subtraction of dynamic scenes[C]//IEEE International Conference on Computer Vision. Nice, France: [s.n.], 2003:1305-1312.
[11]  Wang L, Wang L, Wen M, et al. Background subtraction using incremental subspace learning[C]∥IEEE International Conference on Image Processing. San Antonio, Texas, USA:[s.n.], 2007:V-45-V-48.
[12]  Belhumeur P, Kriegman D. What is the set of images of an object under all possible illumination conditions?[J]. Int Journal of Computer Vision, 1998,28(3):245-260.
[13]  Weng J, Zhang Y, Hwang W. Candid covariance-free incremental principal components analysis[J]. IEEE Trans Pattern Anal Machine Intell, 2003,25(8):1034-1040.
[14]  Ross D, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. Int Journal of Computer Vision, 2008,77:125-141.
[15]  Lee D. Effective gaussian mixture learning for video background subtraction[J]. IEEE Trans Pattern Anal Machine Intell, 2005,27(5):827-832.
[16]  Zhao Y, Gong H, Lin L, et al. Spatio-temporal patches for night background modeling by subspace learning[C]∥Proceedings of International Conference on Pattern Recognition. Tampa, Florida, USA:[s.n.], 2008:1-4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133