全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于动态贝叶斯网络的交通流状态辨识方法

Keywords: 交通流状态,动态贝叶斯网络,先验概率,转移概率

Full-Text   Cite this paper   Add to My Lib

Abstract:

为准确地对交通流状态进行辨识,进而支持交通流实时诱导系统有效运行,结合速度、流量与车道占有率3种交通流参数,将贝叶斯网络用于交通流状态辨识,提出了基于动态贝叶斯网络的交通流状态辨识方法.利用英国南安普敦市的实际数据对上述方法进行了仿真验证.验证结果表明,利用动态贝叶斯交通流状态辨识方法可以更加准确地判别出交通流所处的运行状态,这为智能交通系统,特别是交通流实时诱导系统,提供了一定的理论支持.

References

[1]  王英平, 王殿海, 杨少辉, 等.突变理论在交通流分析理论中应用综述[J].交通运输系统工程与信息, 2005, 6(5):68-71. Wang Yingping, Wang Dianhai, Yang Shaohui, et al. A comprehensive review over the application of catastrophe theory in traffic flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2005, 6(5):68-71. (in Chinese)
[2]  Rose C, Smaili C. A dynamic Bayesian network for handling uncertainty in a decision support system adapted to the monitoring of patients treated by hemodialysis[C]//Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence2005.[S.l]: IEEE, 2005:594-598.
[3]  唐政, 高晓光.基于离散动态贝叶斯网络的辐射源目标识别研究[J].系统仿真学报, 2009, 21(1):117-120. Tang Zheng, Gao Xiaoguang. Research on radiant point identification based on discrete dynamic Bayesian network[J]. Journal of System Simulation, 2009, 21(1):117-120. (in Chinese)
[4]  Murphy K P. Dynamic Bayesian networks: representation, inference and learning[D]. Berkeley, USA: University of California, Berkeley, 2002.
[5]  胡汇洋.基于动态贝叶斯网络的目标毁伤等级评估[D].南京:南京理工大学, 2009. Hu Huiyang. Target damage rank assessment based on dynamic Bayesian network[D]. Nanjing: Nanjing University of Science and Technology, 2009. (in Chinese)
[6]  中国公路学会《交通工程手册》编委会.交通工程手册[M].北京:人民交通出版社, 1997. Traffic engineering manuals editorial committee of China highway society. Traffic engineering manuals[M].Beijing: China Communications Press, 1997. (in Chinese)
[7]  张敬磊.基于数据挖掘的交通流状态辨识算法研究[D].淄博:山东理工大学, 2006. Zhang Jinglei. Research on traffic flow condition recognition algorithms based on data mining[D]. Zibo: Shangdong University of Technology, 2006. (in Chinese)
[8]  Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks[J]. Bioinformatics, 2003, 19:2271-2282.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133