OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
正定矩阵流形上的Jacobi场
Keywords: 正定矩阵,黎曼联络,黎曼曲率张量,Jacobi场
Abstract:
讨论了正定矩阵流形D(n)的几何结构.新定义其上的黎曼度量,给出了流形D(n)上的黎曼联络和黎曼曲率张量.从微分几何的角度,研究流形D(n)上的Jacobi场,进而考虑测地线的收敛性,并举例说明结果.
References
[1] | Amari S. Differential geometrical methods in statistics[M]. Berlin: Springer-Verlag, 1985.
|
[2] | Amari S, Nagaoka H. Methods of information geometry[M]. Oxford: Oxford University Press, 2000.
|
[3] | Cafaro C, Ali S A. Jacobi fields on statistical manifolds of negative curvature[J]. Physica D, 2007,234(1):70-80.
|
[4] | Casetti L, Pettini M, Cohen E G D. Geometric approach to Hamiltonian dynamics and statistical mechanics[J]. Physics Reports, 2000,337(3):237-341.
|
[5] | Ohara A, Kitamori T. Geometric structures of stable state feedback systems[J]. IEEE Transactions on Automatic Control, 1993,38:1579-1583.
|
[6] | Peter W, Petz D, Anda A. On the curvature of a certain Riemannian space of matrices[J]. Infinite Dimensional and Analysis, 2000,3(2):199-212.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|