全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锂离子电池荷电状态预测方法研究

Keywords: 锂离子电池,荷电状态(SOC),库仑效率,自适应无迹卡尔曼滤波(AUKF)

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对电动汽车锂离子动力电池组能量管理中的荷电状态(SOC)预测问题,提出一种根据SOC及电流(SOC-I)计算库仑效率的方法,并建立电池SOC、充放电电流及充放电库仑效率的关系.以无迹卡尔曼滤波(UKF)算法为基础,采用自适应无迹卡尔曼滤波(AUKF)算法预测电池SOC,并将提出的库仑效率计算方法与UKF算法相结合构造了SOC-I-AUKF算法,该算法在预测过程中不断调整库仑效率、系统噪声协方差以及量测噪声协方差,以实现系统状态最优化预测.实验结果表明,SOC-I-AUKF算法有较好的SOC预测效果,与UKF算法相比,其SOC预测绝对误差、相对误差和平均误差水平都有显著提高.

References

[1]  王军平,陈全世,林成涛.镍氢电池组的荷电状态预测方法研究[J].机械工程学报,2005,41(12):62-65.Wang Junping, Chen Quanshi, Lin Chengtao. Study on estimating of the state of charge of Ni/MH battery pack for electric vehicle[J]. Chinese Journal of Mechanical Engineering, 2005,41(12):62-65. (in Chinese)
[2]  石璞,董再励.基于UKF滤波的自主移动机器人锂电池SOC预测[J].仪器仪表学报,2006,27(6):1298-1299,1320.Shi Pu, Dong Zaili. UKF-based SOC estimation of Li-ion battery for autonomous mobile robot[J]. Chinese Journal of Scientific Instrument, 2006,27(6):1298-1299,1320. (in Chinese)
[3]  李红林,孙逢春,张承宁.动力电池充放电效率测试分析[J].电源技术,2005,29(1):49-51.Li Honglin, Sun Fengchun, Zhang Chengning. Test analysis for traction battery charging and discharging efficiency[J]. Chinese Journal of Power Sources, 2005,29(1):49-51. (in Chinese)
[4]  林成涛,陈全世,王军平,等.用改进的安时计量法预测电动汽车动力电池SOC[J].清华大学学报:自然科学版,2006,46(2):247-251.Lin Chengtao, Chen Quanshi, Wang Junping, et al. Improved Ah counting method for state of charge estimation of electric vehicle batteries[J]. Journal of Tsinghua University: Sci&Tech ed, 2006,46(2):247-251. (in Chinese)
[5]  Gregory L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Part 1: background[J]. Journal of Power Sources, 2004,134:252-261.
[6]  Gregory L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Part 2: modeling and identification[J]. Journal of Power Sources, 2004,134:262-276.
[7]  Gregory L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Part 3: state and parameter estimation[J]. Journal of Power Sources, 2004,134:277-292.
[8]  秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.Qin Yongyuan, Zhang Hongyue, Wang Shuhua. Kalman filter and integrated navigation theory[M]. Xi’an: Northwestern Polytechnical University Press, 1998. (in Chinese)
[9]  邓自立.卡尔曼滤波与维纳滤波:现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2001.Deng Zili. Kalman filter and wiener filter: modern time series analysis method[M]. Harbin: Harbin University Press, 2001. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133