全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

变质量非完整系统Tzénoff方程的Mei 对称性与其导出的守恒量

Keywords: 变质量非完整系统,Tzénoff方程,Mei对称,守恒量

Full-Text   Cite this paper   Add to My Lib

Abstract:

导出了变质量非完整力学系统的Tzénoff方程,研究了变质量非完整力学系统Tzénoff方程的Mei对称性及其所导出的守恒量,并给出了该守恒量的函数表达式和导出该守恒量的判据方程.研究结果对进一步探究变质量航天器系统具有更为深刻的物理意义和指导价值.

References

[1]  Noether A E. Invariance variations problems[J]. Nachr Akad Wiss G?ttingen Math Phys, 1918,KI,II:235-257.
[2]  陈向炜,赵永红,刘畅.变质量完整动力学系统的共形不变性与守恒量[J].物理学报,2009,58(8):5150-5154. Chen Xiangwei, Zhao Yonghong, Liu Chang. Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass[J]. Acta Physica Sinica, 2009,58(8):5150-5154. (in Chinese)
[3]  梅凤翔.约束力学系统的对称性与守恒量[M].北京:北京理工大学出版社,2004. Mei Fengxiang. Symmetry and conserved quantity of the constrained mechanical systems[M]. Beijing: Beijing Institute of Technology Press, 2004. (in Chinese)
[4]  张宏彬,吕洪升,顾书龙.完整约束力学系统保Lie对称性差分格式[J].物理学报,2010,59(8):5213-5218. Zhang Hongbin, Lü Hongsheng, Gu Shulong. The Lie point symmetry-preserving difference scheme of holonomic constrained mechanical systems[J]. Acta Physica Sinica, 2010,59(8):5213-5218.(in Chinese)
[5]  Mei Fengxiang. Form invariance of Lagrange system[J]. Journal of Beijing Institute of Technology, 2000,9(2):120-124.
[6]  方建会.Lagrange系统Mei对称性直接导致的一种守恒量[J].物理学报,2009,58(6):3617-3619. Fang Jianhui. A kind of conserved quantity of Mei symmetry for Lagrange system[J]. Acta Physica Sinica, 2009,58(6):3617-3619. (in Chinese)
[7]  Zheng Shiwang, Xie Jiafang, Jia Liqun. Symmetry and Hojman conserved quantity of Tzénoff equations for unilateral holonomic system[J]. Communications in Theoretical Physics,2007,48(1):43-47.
[8]  Zheng Shiwang, Xie Jiafang, Li Yanmin. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems of non-Chetaev’s type[J]. Communications in Theoretical Physics, 2008,49(4):851-854.
[9]  Zheng Shiwang, Xie Jiafang, Wang Jianbo, et al. Another conserved quantity by Mei symmetry of Tzénoff equation for the non-holonomic systems[J].Chinese Physics Letters, 2010,27(3):030307-1-030307-4.
[10]  梅凤翔.变质量完整力学系统的形式不变性与非Noether守恒量[J].北京理工大学学报,2003,23(1):1-3. Mei Fengxiang. Form invariance and non-noether conserved quantity for holonomic mechanical systems with variable mass[J]. Transactions of Beijing Institute of Technology, 2003,23(1):1-3. (in Chinese)
[11]  张鹏玉,方建会.变质量Birkhoff系统的Lie对称性和非Noether守恒量[J].物理学报,2006,55(8):3813-3816. Zhang Pengyu, Fang Jianhui. Lie symmetry and non-noether conserved quantities of variable mass Birkhoffian system[J]. Acta Physica Sinica, 2006,55(8):3813-3816. (in Chinese)
[12]  梅凤翔,刘端,罗勇.高等分析力学[M].北京:北京理工大学出版社,1991. Mei Fengxiang, Liu Duan, Luo Yong. Advanced analytical mechanics[M]. Beijing: Beijing Institute of Technology Press, 1991. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133