全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多星座GNSS卫星轨道模型简化方法研究

Keywords: 全球导航卫星系统(GNSS),卫星轨道模型,可视化,K-means

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高多星座GNSS卫星轨道模型的可视化效率,从卫星椭圆轨道的近似,统一同一星座卫星轨道半长轴长度,基于K-means算法对升交点赤经数据进行聚类划分与重新赋值这3个方面对模型进行了简化,并进行了仿真计算.仿真结果表明,该方法的采用显著减少了需要显示的轨道数量,减少了完成模型渲染所需的时间,提高了每秒显示帧数.多星座GNSS卫星轨道模型的可视化效率得到明显提高.

References

[1]  Scott G, Demoz G. GNSS applications and methods[M]. London: Artech House, 2009.
[2]  刘旻,吴嗣亮.实时高动态GNSS信号模拟器高精度伪距生成方法[J].北京理工大学学报,2011,31(9):1053-1057. Liu Min, Wu Siliang. Method of high accuracy pseudorange generation for real-time high dynamic GNSS signal simulator[J]. Transactions of Beijing Institute of Technology, 2011,31(9):1053-1057. (in Chinese)
[3]  杨成伟,郑建华,李明涛.基于脉冲星和太阳敏感器的日地系Halo轨道组合导航研究[J].北京理工大学学报,2013,33(6):612-616. Yang Chengwei, Zheng Jianhua, Li Mingtao. Integrated navigation based on pulsar and sun sensor in sun-earth Halo orbit[J]. Transactions of Beijing Institute of Technology, 2013,33(6):612-616. (in Chinese)
[4]  赵书阁,张景瑞,张尧.日地系统L2点Halo轨道自主天文导航及精度分析[J].北京理工大学学报,2013,33(11):1119-1123. Zhao Shuge, Zhang Jingrui, Zhang Yao. Autonomous celestial navigation and analysis of precision for spacecraft on Halo orbit near L2 point of sun-earth system[J]. Transactions of Beijing Institute of Technology, 2013,33(11):1119-1123. (in Chinese)
[5]  Charles D H, Christopher R J. The visualization handbook[M]. Waltham: Academic Press, 2004.
[6]  Elliott D K, Christopher J H. Understanding GPS principles and applications[M]. 2nd ed. London: Artech House, 2010.
[7]  周庆勇,杜兰,蓝朝桢,等.基于高/低轨监视平台的GEO卫星定轨精度比较[J].北京理工大学学报,2010,30(12):1422-1426. Zhou Qingyong, Du Lan, Lan Zhaozhen, et al. A comparative study on orbit determination for geostationary satellites based on high/low surveillance platform[J]. Transactions of Beijing Institute of Technology, 2010,30(12):1422-1426. (in Chinese)
[8]  Bernhard H, Herbert L, Elmar W. GNSS-global navigation satellite systems: GPS, GLONASS, Galileo and more[M]. Austria: Springer, 2008.
[9]  Jain A K. Data clustering: 50 years beyond K-Means[J]. Pattern Recognition Letters, 2010,31(8):651-666.
[10]  Aloise D, Deshpande A, Hansen P. NP-hardness of euclidean sum-of-squares clustering[J]. Machine Learning, 2009,75(2):245-248.
[11]  Steinley D. K-means clustering: a half-century synthesis[J]. British Journal of Mathematical & Statistical Psychology, 2006,59:1-34.
[12]  Li Youguo, Wu Haiyan. A clustering method based on K-means algorithm[C]//Proceedings of International Conference on Solid State Devices and Materials Science (SSDMS). Macao, China: [s.n.], 2012:1104-1109.
[13]  Li Chunsheng. Cluster center initialization method for K-means algorithm over data sets with two clusters[C]//Proceedings of International Conference on Advances in Engineering (ICAE). Nanjing, China: [s.n.], 2011:324-328.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133