全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于拉格朗日方法的水翼尾缘非定常涡旋结构研究

DOI: 10.15918/j.tbit1001-0645.2015.07.002

Keywords: 水翼 涡旋结构 拉格朗日拟序结构(LCS) 有限时间李雅普诺夫指数方法(FTLE)

Full-Text   Cite this paper   Add to My Lib

Abstract:

湍流中涡旋结构的非定常脱落是普遍存在的,其脱落规律的研究具有广泛的工程应用背景,探索有效的涡旋结构预测方法具有重大意义. 采用基于拉格朗日体系的有限时间李雅普诺夫指数方法对水翼尾缘附近涡旋结构的非定常发展过程进行研究. 采用大涡模拟方法对水翼周围湍流场进行计算,通过与实验结果进行对比,验证数值模拟方法的合理性与准确性. 并在此基础上,对水翼尾缘的非定常涡旋结构进行分析. 结果表明:尾缘涡旋非定常动态行为导致水翼动力特征准周期性波动. 有限时间李雅普诺夫指数方法可以准确描述尾缘涡的非定常流动细节,拉格朗日拟序结构可以捕捉水翼尾缘涡旋结构和尾迹涡街结构的边界

References

[1]  Rockwell D. Vortex-body interactions[J]. Annual Review of Fluid Mechanics, 1998,30(1):199-229.
[2]  Williamson C H K, Govardhan R. Vortex-induced vibrations[J]. Annu Rev Fluid Mech, 2004,36:413-455.
[3]  Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004,19(4):389-447.
[4]  Bearman P W. Circular cylinder wakes and vortex-induced vibrations[J]. Journal of Fluids and Structures, 2011,27(5):648-658.
[5]  Assi G R S, Meneghini J R, Aranha J A P, et al. Experimental investigation of flow-induced vibration interference between two circular cylinders[J]. Journal of Fluids and Structures, 2006,22(6):819-827.
[6]  Blevins R D. Effect of sound on vortex shedding from cylinders[J]. Journal of Fluid Mechanics, 1985,161(1):217-237.
[7]  Antonsen. Unsteady flow in wicket gate and runner with focus on static and dynamic load on runner[D]. Trond heim, Norway: Norwegian University of Science and Technology, 2007.
[8]  Ausoni P, Farhat M, Escaler X, et al. Cavitation influence on von Karman vortex shedding and induced hydrofoil vibrations[J]. Transactions-American Society of Mechanical Engineers Journal of Fluids Engineering, 2007,129(8):966.
[9]  Choi H, Jeon W P, Kim J. Control of flow over a bluff body[J]. Annual Review of Fluid Mechanics, 2008,40:113-139.
[10]  童秉纲,尹协远,朱克勤.涡运动理论[M].合肥:中国科学技术大学出版社,2008. Tong Binggang, Yin Xieyuan, Zhu Keqin. Vortex dynamic theory[M]. Hefei: Press of University of Science and Technology of China, 2008. (in Chinese)
[11]  Hunt J C R, Wray A A, Moin P. Eddies, streams, and convergence zones in turbulent flows[J]. Studying Turbulence Using Numerical Simulation Databases, 2. 1988,1:193-208.
[12]  Chong M S, Perry A E, Cantwell B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids, 1990,2:408-420.
[13]  Jeong J, Hussain F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995,285(69):69-94.
[14]  Degani D, Seginer A, Levy Y. Graphical visualization of vortical flows by means of helicity[J]. AIAA Journal, 1990,28(8):1347-1352.
[15]  Zhang S, Choudhury D. Eigen helicity density: a new vortex identification scheme and its application in accelerated inhomogeneous flows[J]. Physics of Fluids, 2006,18:058104.
[16]  Haller G, Yuan G. Lagrangian coherent structures and mixing in two-dimensional turbulence[J]. Physica D: Nonlinear Phenomena, 2000,147(3):352-370.
[17]  Farrell O C, Dabiri J O. A Lagrangian approach to identifying vortex pinch-off[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2010,20(1):017513-017513-9.
[18]  Shadden S C, Lekien F, Marsden J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D: Nonlinear Phenomena, 2005,212(3):271-304.
[19]  Tang J N, Tseng C C, Wang N F. Lagrangian-based investigation of multiphase flows by finite-time Lyapunov exponents[J]. Acta Mechanica Sinica, 2012,28(3):612-624.
[20]  Smagorinsky J. General circulation experiments with the primitive equations I: the basic experiment[J]. Monthly Weather Review, 1963,91(3):99-164.
[21]  黄彪.非定常空化流动机理及数值计算模型研究[D].北京:北京理工大学,2012. Huang Biao. Physical and numerical investigation of unsteady cavitating flows[D]. Beijing: Beijing Institute of Technology, 2012. (in Chinese)
[22]  张博.亚空化非定常流动机理和动力特性研究[D].北京:北京理工大学,2009. Zhang Bo. Analysis of physics and dynamics of unsteady sub-cavitating flows[D]. Beijing: Beijing Institute of Technology,2009. (in Chinese)
[23]  Fuchs R, Kemmler J, Schindler B, et al. Toward a Lagrangian vector field topology[J]. Computer Graphics Forum, 2010,29(3):1163-1172.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133