全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

残缺合作博弈的L-核仁与I-Shapley值

DOI: 10.15918/j.tbit1001-0645.2015.07.021

Keywords: 合作博弈 最小二乘核仁 Shapley值 二次规划

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过引入残缺合作博弈的相关定义,给出了验证其超可加性的有效模型. 基于子联盟的超出值与平均超出值之间的离差最小化的博弈准则,定义了残缺合作博弈的L-核仁. 构造了分配向量与正、负理想分配间的离差函数,提出了求解残缺合作博弈I-Shapley值的最优化模型,探讨了L-核仁与I-Shapley值的存在性与合理性

References

[1]  Shapley L. A value for n-persons games[J]. Annals of Mathematics Studies, 1953,28(7):307-318.
[2]  Schmeidler D. The nucleolus of a characteristic function game [J]. SIAM Journal of Applies Mathematics, 1969,17:1163-1170.
[3]  Tarashnina S. The simplified modified nucleolus of a cooperative TU-game [J]. Top, 2011,19:150-166.
[4]  Ruiz L M, Federico Vahenciano, Zarzuel J M. The least square prenucleolus and the least square nucleolus, two values for TU games based on the excess vector[J]. International Journal of Game Theory, 1996,25(1):113-134.
[5]  Polkowski L, Araszkiewicz B. A rough set approach to estimating the game value and the Shapley value from data[J]. Fundamenta Informaticae, 2002,53:335-343.
[6]  Masuya S, Inuiguchi M. Toward the theory of cooperative games under incomplete information[J]. Lecture Notes in Computer Science, 2009(5861):102-113.
[7]  Kern W, Paulusma D. On the core and f-nucleolus of flow games [J]. Mathematics of Operations Research, 2009,34:981-991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133