Xu F, Willson A N. Efficient hardware architecture for eigenvector and signal subspace estimation[J]. IEEE Trans on Circuits and Sytems, 2004,51(3):517-525.
[2]
Golub G H, Van Loan C F. Matrix computations[M]. 3rd ed. Baltimore, Maryland: Johns Hopkins University Press, 1996:414-438.
[3]
Luk F T, Brent R P. The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays[J]. SIAM Journal on Scientific and Statistical Computing, 1985,6(1):69-84.
[4]
Kleinsteuber M. A sort-Jacobi algorithm for semisimple lie algebras[J]. Linear Algebra and Its Applications, 2009,430:155-173.
[5]
Luk F T, Park H. A proof of convergence for two parallel Jacobi SVD algorithms[J]. IEEE Trans on Computers,1989,38(6):806-811.
[6]
Mascarenhas W F. On the convergence of the Jacobi method for arbitrary orderings[J]. SIAM Journal on Matrix Analysis and Applications, 1995,16(4):1197-1209.
[7]
Xu G, Kailath T. Fast subspace decomposition[J]. IEEE Trans on Signal Processing, 1994,42(4):539-551.
[8]
Xu D C, Liu Z W, Qi X D, et al. An FPGA-based implementation of MUSIC for centrosymmetric circular array //Proceedings of International Conference on Signal Processing. Beijing: , 2008:490-493.
[9]
Nash J C. A one-sided transformation method for the singular value decomposition and algebraic eigenproblem[J]. The Computer Journal, 1975,18(1):74-76.
[10]
Zhou B B, Brent R P. A parallel ring ordering algorithm for efficient one-sided Jacobi SVD computations[J]. Journal of Parallel and Distributed Computing, 1997,42(1):1-10.
[11]
Zha H, Zhang Z. A sorted partial Jacobi method and its convergence analysis[J]. Linear Algebra and Its Applications, 1998,270:79-108.