Wuerl A, Crain T, Braden E. Genetic algorithm and calculus of variations-based trajectory optimization technique[J]. Journal of Spacecraft and Rockets, 2003,40(6):882 888.
[2]
Wall B, Conway B A. Near-optimal low-thrust earth-mars trajectories via a genetic algorithm[J]. Journal of Guidance, Control, and Dynamics, 2005,28(5):1027 1031.
[3]
Storn R, Price K. Differential evolution: a simple and heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997,11:341 359.
[4]
Herman A L, Spencer D B. Optimal, low-thrust earth-orbit transfers using higher-order collocation methods[J]. Journal of Guidance, Control, and Dynamics, 2002,25(1):40 47.
[5]
Gergaud J, Haberkorn T. Orbital transfer: some links between the low-thrust and the impulse cases[J]. Acta Astronautica, 2007,60(8 9):649 657.
[6]
Kluever C A. Optimal low-thrust interplanetary trajectories by direct method techniques[J]. Journal of the Astronautical Sciences, 1997,45(3):247 262.
[7]
Petropoulos A E. Low-thrust orbit transfers using candidate Lyapunov functions with a mechanism for coasting //AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Providence: AIAA/AAS, 2004:748 762.
[8]
Vadali S R, Nah R S. Fuel-optimal planar earth-mars trajectories using low-thrust exhaust-modulated propulsion[J]. Journal of Guidance, Control, and Dynamics, 2000,23(3):476 482.
[9]
Park S Y, Choi K H. Optimal low-thrust intercept/rendezvous trajectories to earth-crossing objects[J]. Journal of Guidance, Control, and Dynamics, 2005,28(5):1049 1055.
[10]
Rauwofl G A, Coverstone-Carroll V L. Near-optimal low-thrust orbit transfers generated by a genetic algorithm[J]. Journal of Spacecraft and Rockets, 1996,33(6):859 862.