Jeffrey S. Infrared target model validation using gray-level cooccurrence matrices[J]. SPIE, 1999,3699:197-206.
[2]
Ojala T, Pietikainen M, Menp T. Multi-resolution gray scale and rotation invariant texture analysis with local binary pattern[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
[3]
Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult-lighting conditions[J]. IEEE Transactions on Image Processing, 2010,19(6):1635-1650.
[4]
许卫东,吕绪良,陈兵,等.一种基于纹理分析的伪装器材效果评价模型[J].兵工学报,2002,23(3):329-331. Xu Weidong, Lü Xuliang, Chen Bing, et al. A model based on texture analysis for the performance evaluation of camouflage screen equipment[J]. Acta Arm Amentar, 2002,23(3):329-331. (in Chinese)
[5]
Nyberg S, Bohman L. Assessing camouflage methods using textural features[J]. Optical Engineering, 2001,40(9):1869-1876.
[6]
黄峰,汪岳峰,董伟,等.基于灰度相关的红外隐身效果评价方法研究[J].光子学报,2006,35(6):928-931. Huang Feng, Wang Yuefeng, Dong Wei, et al. Study on infrared camouflage effect evaluation based on gray correlation[J]. Acta Photnica Sinica, 2006,35(6):928-931. (in Chinese)
[7]
Reinhard B, Georg S, Floris M. Fuzzy logic apporach for the quantitative assessment of camouflage effectiveness in the thermal infrared domain[J]. Proceedings of SPIE, 2000,4029:378-385.
[8]
Georg S, Wimmer A, Horst B. Minimum description length principle applied to camouflage assessment[J]. Proceedings of SPIE, 2001,4370:50-59.