全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PBX炸药有效弹性模量的有限元模拟

Keywords: PBX炸药,弹性模量,有限元,数值模拟,细观力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用代表体积元法,建立了炸药颗粒圆形随机分布和六边形规则分布细观力学模型,通过ANSYS有限元软件对PBX炸药的有效弹性模量进行了计算,计算结果和实验结果吻合较好.计算分析了炸药颗粒的性质、体积分数、形状和级配以及黏结剂性质等因素对PBX炸药有效弹性模量的影响.结果表明,炸药颗粒形状和分布方式对PBX炸药的有效弹性模量影响较小;颗粒级配对PBX炸药的有效弹性模量影响较大.PBX炸药的有效弹性模量随炸药颗粒体积分数以及弹性模量的增加而增大,在炸药颗粒体积分数较高时,炸药颗粒性质对PBX炸药有效弹性模量的影响较明显.黏结剂的体积分数虽然很少,但黏结剂的弹性模量对PBX炸药有效弹性模量的影响较大.

References

[1]  敬仕明,李明,龙新平.PBX有效弹性性能研究进展[J].含能材料,2009,17(1):119-123. Jing Shiming, Li Ming, Long Xinping. Progress in predicting the effective elastic properties of PBX [J]. Chinese Journal of Energetic Materials, 2009,17(1):119-123. (in Chinese)
[2]  Banerjee B, Adams D O. On predicting the effective elastic properties of polymer bonded explosives using the recursive cell methods[J]. Int J Solids Struct, 2004,41:481-509.
[3]  Annapragada S R, Sun D W, Garimella S V. Prediction of effective thermo-mechanical properties of particulate composites[J]. Comp Mater Sci, 2007,40:255-266.
[4]  Wu Y Q, Huang F L. A micromechanical model for predicting combined damage of particles and interface debonding in PBX explosives [J]. Mech Mater, 2009,41:27-47.
[5]  Barua A, Zhou M. A lagrangian framework for analyzing microstructural level response of polymer-bonded explosives [J]. Modelling Simul Mater Sci Eng, 2011,19:1-24.
[6]  Chen Pengwan, Huang Fenglei, Ding Yansheng. Deformation and failure of polymer bonded explosives[J]. Journal of Beijing Institute of Technology, 2004,13(1):43-47.
[7]  Chen Pengwan, Dai Kaida, Huang Fenglei, et al. Ultrasonic evaluation of the impact damage of polymer bonded explosives[J]. Journal of Beijing Institute of Technology, 2004,13(3):242-246.
[8]  Hill R. Elastic properties of reinforced solids: some theoretical principles[J]. J Mech Phys Solids, 1963,11:357-372.
[9]  胡更开,侯敬春.复合材料力学性能细观预测[J].北京理工大学学报,1995,15(3):265-270. Hu Gengkai,Hou Jingchun. Micromechanical modeling of mechanical properties of composite materials[J]. Journal of Beijing Institute of Technology,1995,15(3):265-270. (in Chinese)
[10]  Mishnaevsky L L, Schmauser S. Continuum mesomechanical finite element modeling in materials development: a state-of-the-art review[J]. Appl Mech Rev, 2011,54:49-66.
[11]  Kanit T, Forest S, Galliet I, et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach[J]. Int J Solids Struct, 2003,40:3647-3679.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133