全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进的GA-LSSVM的软测量建模方法

Keywords: 软测量,核独立元分析(KICA),遗传算法(GA),最小二乘支持向量机(LSSVM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对工业过程中某些重要过程变量难以实现在线测量的问题,提出了一种改进的最小二乘支持向量机(IGA-LSSVM)的软测量建模方法.该方法采用核独立分量分析(KICA)对高维数据进行特征提取,利用改进的最小二乘支持向量机进行建模.该方法既利用了最小二乘支持向量机求解速度快的特点,又利用了自适应遗传算法强大的全局搜索能力,增强了模型的自适应性.用该方法建立柴油凝点的软测量模型,结果表明,基于IGA-LSSVM方法建立的软测量模型具有较高的预测精度和泛化能力.

References

[1]  Gencoglu M T, Uyar M. Prediction of flashover voltage of insulators using least squares support vector machines[J]. Expert Systems with Applications, 2009,36:10789-10798.
[2]  Cao Shugang, Liu Yanbao, Wang Yanping. A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM[J]. J China Univ Mining & Technol, 2008,18:172-176.
[3]  Srinivas M P, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithm[J]. IEEE Trans on System, Man and Cybernetics, 1994,24(4):656-667.
[4]  Bach F R, Jordan M I. Kernel independent component analysis[J]. Journal of Machine Learning Research, 2002(3):1-48.
[5]  Yang Jian, Gao Xiumei. Kernel I C A: an alternative formulation and its application to face recognition[J]. Pattern Recognition(S0031-3203), 2005,38(10):1784-1787.
[6]  Hyvrinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans on Neural Networks, 1999,10(3):626-634.
[7]  Hyvrinen A, Karhunen J, Oja E.独立成分分析[M].周宗潭, 董国华,徐昕,等,译.北京:电子工业出版社,2007. Hyvrinen A, Karhunen J, Oja E. Independent components analysis[M]. Zhou Zongtan, Dong Guohua, Xu Xin, et al, transl. Beijing: Publishing House of Electronics Industry, 2007. (in Chinese)
[8]  Suykens J A K, Vandewalle J. Least squares support vector machines classifiers[J]. Neural Networks Letters, 1999,19(3):293-300.
[9]  Gencoglu M T, Uyar M. Prediction of flashover voltage of insulators using least squares support vector machines[J]. Expert Systems with Applications, 2009,36:10789-10798.
[10]  Ziomek W, Reformat M, Kuffel E. Application of genetic algorithms to pattern recognition of defects in GIS[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2000,7(2):161-168.
[11]  王济,胡晓.Matlab在振动信号处理中的应用[M].北京:中国水利水电出版社,2006. Wang Ji, Hu Xiao. Application of Matlab in vibration signal processing[M].Beijing: China Waterpower Press, 2006. (in Chinese)
[12]  Scholkopf B, Sung K, Burges C, et al. Comparing supportvector machines with Gaussian kernels to radial basis function classifier[J]. IEEE Transactions on Signal Processing, 1997,45(11):2758-2765.
[13]  Keerthi S S K, Lin C J. Asymptotic behaviors of support vectormachines with Gaussian kernel[J]. Neural Computation, 2003,15(7):1667-1689.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133