Lin C H, Jiang L, Xiao H, et al. Surface-enhanced Raman scattering microchip fabricated by femtosecond laser[J]. Optics Letters, 2010,35(17):2937-2939.
[2]
Xiong W, Zhou Y S, He X N, et al. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation[J]. Light Science & Applications, 2012,1:e6.
[3]
Salleo A, Sands T, Genin F Y. Machining of transparent materials using an IR and UV nanosecond pulsed laser[J]. Applied Physics A: Material Science & Processing, 2000,71(6):601-608.
[4]
Tonshoff H K, Momma C, Ostendorf A, et al. Microdrilling of metals with ultrashort laser pulses[J]. Journal of Laser Applications, 2000,12(1):23-27.
[5]
Gamaly E G, Rode A V, Luther-Davies B, et al. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics[J]. Physics of Plasmas, 2002,9(3):949-957.
[6]
Jiang L, Tsai H L. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. International Journal of Heat and Mass Transfer, 2005,48(3-4):487-499.
[7]
Lin C H, Rao Z H, Jiang L, et al. Investigations of femtosecond-nanosecond dual-beam laser ablation of dielectrics[J]. Optics Letters, 2010,35(14):2490-2492.
[8]
Li X, Jiang L, Wang C, et al. Transient localized material properties changes by ultrafast laser-pulse manipulation of electron dynamics in micro/nano manufacturing //Proceedings of MRS Spring Meeting. San Francisco CA: , 2011, 1365: mrss11-1365-tt01-01.
[9]
Wang C, Jiang L, Wang F, et al. First-principles calculations of the electron dynamics during femtosecond laser pulse train material interactions[J]. Physics Letters A, 2011,36(22):3200-3204.
[10]
Miura K, Qiu J, Inouye H, et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser[J]. Applied Physics Letters, 1997,71(23):3329-3331.
[11]
Apostolopoulos V, Laversenne L, Colomb T, et al. Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+: Sapphire[J]. Applied Physics Letters, 2004,85(7):1122(1-4).
[12]
Eaton S, Zhang H, Herman P, et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate[J]. Optics Express, 2005,13(12):4708-4716.
[13]
Nejadmalayeri A H, Herman P R, Burghoff J, et al. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses[J]. Optics Letters, 2005,30(9):964-966.
[14]
Hnatovsky C, Taylor R S, Rajeev P P, et al. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica[J]. Applied Physics Letters, 2005,87(1):014104(1-3).
[15]
Yang W, Bricchi E, Kazansky P G, et al. Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing[J]. Optics Express, 2006,14(21):10117-10124.
[16]
Maselli V, Grenier J R, Ho S, et al. Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel[J]. Optics Express, 2009,17(14):11719-11729.
[17]
Beresna M, Kazansky P G. Polarization diffraction grating produced by femtosecond laser nanostructuring in glass[J]. Optics Letters, 2010,35(10):1662-1664.
[18]
Ventura M J, Straub M, Gu M. Void channel microstructures in resin solids as an efficient way to infrared photonic crystals[J]. Applied Physics Letters, 2003,82(11):1649-1651.
[19]
Zhou G, Ventura M J, Vanner M R, et al. Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material[J]. Optics Letters, 2004,29(19):2240-2242.
[20]
Cumming B P, Jesacher A, Booth M J, et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate[J]. Optics Express, 2011,19(10):9419-9425.
[21]
Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996,21(24):2023-2025.
[22]
Li C D, Wang D L, Luo L, et al. Feasibility of femtosecond laser writing multi-layered bit planes in fused silica for three-dimensional optical data storage[J]. Chinese Physics Letters, 2001,18(4):541-543.
[23]
Vilkner T, Janasek D, Manz A. Micro total analysis systems: recent developments[J]. Analytical Chemistry, 2004,76(12):3373-3385.
[24]
Dittrich P S, Tachikawa K, Manz A. Micro total analysis systems: latest advancements and trends[J]. Analytical Chemistry, 2006,78(12):3887-3908.
[25]
Whitesides G M. The origins and the future of microfluidics[J]. Nature, 2006,442(7101):368-373.
[26]
Psaltis D, Quake S R, Yang C H. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006,442(7101):381-386.
[27]
Craighead H. Future lab-on-a-chip technologies for interrogating individual molecules[J]. Nature, 2006,442(7101):387-393.
[28]
Bellouard Y, Said A, Dugan M, et al. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching[J]. Optics Express, 2004,12(10):2120-2129.
[29]
Sugioka K, Hanada Y, Midorikawa K. Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips[J]. Laser & Photonics Reviews, 2010,4(3):386-400.
[30]
国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011~2020) .北京:科学出版社,2010. Department of Engineering and Material Sciences, National Natural Science Foundation of China. Strategic planning (2011~2020) of mechanical engineering . Beijing: Science Press, 2010. (in Chinese)
[31]
王国彪.光制造科学与技术的现状和展望[J].机械工程学报,2012,47(21):157-69. Wang Guobiao. Photonic manufacturing science & technology: overview and outlook[J]. Journal of Mechanical Engineering, 2012,47(21):157-169. (in Chinese)
[32]
Kautek W, Kruger J, Lenzner M, et al. Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps[J]. Applied Physics Letters, 1996,69(21):3146-3148.
[33]
Lenzner M, Kruger J, Sartania S, et al. Femtosecond optical breakdown in dielectrics[J]. Physical Review Letters, 1998,80(18):4076-4079.
[34]
Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics, 2006,100(2):023116(1-7).
[35]
Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008,2(4):219-225.
[36]
Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices-micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 2001,412(6848):697-698.
[37]
Lin C H, Jiang L, Zhou J, et al. Laser-treated substrate with nanoparticles for surface-enhanced Raman scattering[J]. Optics Letters, 2010,35(7):941-943.
[38]
Osellame R, Maselli V, Vazquez R M, et al. Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation[J]. Applied Physics Letters, 2007,90(23):231118(1-3).
[39]
Osellame R, Hoekstra H J W M, Cerullo G, et al. Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips[J]. Laser & Photonics Reviews, 2011,5(3):442-463.