Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652-657.
[2]
Whittingham M S. Lithium batteries and cathode materials[J]. Chem Rev, 2004,104(10):4271-4301.
[3]
Arico A S, Bruce P, Scrosati B, et al. Nanostructured matericals for aduanced energy conversion and storage devices[J]. Nat Mater, 2005(5):366-377.
[4]
Julien C M, Massot M. Lattice vibrations of materials forlithiom redargeable batteries Ⅰ. Lithium manganese oxide spinel[J]. Mater Sci Eng B, 2003,97:217-230.
[5]
Tateishi K, Boulay D, Ishizawa N, et al. Structural disorder along the lithium diffusion pathway in cubically stabilized lithium manganese spinelⅡmolecular dynamics calculation[J]. J Solid State Chem, 2003,174(1):175-181.
[6]
Amatuccia G, Tarasconb J M. Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries[J]. J Electrochem Soc, 2002,149(12):K31-K46.
[7]
Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1997,144(4):1188-1194.
[8]
Hu Y S, Dominko R, Maier J, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect[J]. Adv Mater, 2007,19(15):1963-1966.
[9]
Wang Y, Cao G. Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Adv Mater, 2008,20(12):2251-2269.
[10]
Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J Mater Chem, 2007,17(30):3112-3125.
[11]
Baren J, Lei C H, Wen J G, et al. Local structure of layered oxide electrode materials for lithium-ion batteries[J]. Adv Mater, 2010,22(10):1122-1127.
[12]
Meng Y S, Ceder G, Grey C P, et al. Cation ordering in layered O3 Li[NixLi13-2x3Mn2/3-x/3]O2(0≤x≤1/2) compounds[J]. Chem Mater, 2005,17(9):2386-2394.
[13]
Koyama Y, Tanaka I, Nagao M, et al. First-principles study on lithium removal from Li2MnO3[J]. J Power Sources, 2009,189(1):798-801.
[14]
Breger J, Jiang M, Grey C P. High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution[J]. J Solid State Chem, 2005,178(9):2575-2585.
[15]
Massarotti V, Bini M, Capsoni D, et al. Ab Initio structure determination of Li2MnO3 from X-ray powder diffraction data[J]. J Appl Crystallogr, 1997,30(2):123-127.
[16]
Strobel P, Lambertandron B. Crystallographic and magnetic structure of Li2MnO3[J]. J Solid State Chem, 1988,75(1):90-98.
[17]
Riou A, Lecerf A, Gerault Y, et al. Etude structurale de Li2MnO3[J]. Mater Res Bull, 1992,27(3):269-275.
[18]
Breger J, Meng Y S, Grey C P, et al. Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2:a joint experimental and theoretical study[J]. Chem Mater, 2006,18(20):4768-4781.
[19]
Li H H, Yabuuchi N, Horn Y S, et al. Changes in the cation ordering of layered O3Li(x)Ni(0.5)Mn(0.5)O(2) during electrochemical cycling to high voltages:an electron diffraction study[J]. Chem Mater, 2007,19(10):2551-2565.
[20]
Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/2Mn1/2O2:a possible alternative to LiCoO2 for advanced lithium-ion batteries[J]. Chem Lett, 2001,30(8):744-745.
[21]
Yoon W S, Grey C P, Balasubramanian M, et al. In situ X-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling[J]. J Chem Mater, 2003,15(16):3161-3174.
[22]
Kobayashi H, Sakaebe H, Kageyma H, et al. Changes in the structure and physical properties of the solid solution LiNi1-xMnxO2 with variation in its composition[J]. J Mater Chem, 2003,13(3):590-595.
[23]
Johnson C S, Kim J S, Thackeray M M, et al. Structural characterization of layered LixNi0.5Mn0.5O2(0
[24]
Reed J, Ceder G. Charge, potential, and phase stability of layered LiNi0.5Mn0.5O2[J]. Electrochem Solid State Lett, 2002,5(7):A145-A148.
[25]
Johnson C S, Korte S D, Hackney S A, et al. Structural and electrochemical analysis of layered compounds from Li2MnO3[J]. J Power Sources, 1999,81-82(suppl):491-495.
[26]
Yoon W S, Kim N, Grey C P, et al. Li-6 MAS NMR and in situ X-ray studies of lithium nickel manganese oxides[J]. J Power Sources, 2003,119-121(suppl):649-653.
[27]
Ammundsen B, Paulsen J. Novel lithium ion cathode materials based on layered manganese oxides[J]. Adv Mater, 2001,13(12-13):943-956.
[28]
Paulsen J M, Muller-Neuhanus J R, Dahn J R. Layered LiCoO2 with a different oxygen stacking (O2 structure) as a cathode material for rechargeable Li batteries[J]. J Eletrochem Soc, 2000,147(2):508-516.
[29]
Lu Z, Beaulieu L Y, Dahn J R, et al. Synthesis, structure, and electrochemical behavior of Li[NixLi1-2x/3Mn2-x/3]O2[J]. J Electrochem Soc, 2002,149(6):A778-A791.
[30]
Deb A, Bergmann U, Cramer S P, et al. In situ X-ray absorption spectroscopic study of the Li[Ni1/3Co1/3Mn]O2 cathode material[J]. J Appl Phys, 2005,97(11):113523(1-11).
[31]
Ngala J K, Chemova N A, Whittingham M S, et al. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound[J]. J Mater Chem, 2004,14(2):214-220.
[32]
Thackeray M M, Kang S H, Hackney S A, et al. Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M=Mn, Ni, Co) for lithium batteries[J]. Electrochem Commun, 2006,8(9):1531-1538.
[33]
Kim J S, Johnson C S, Thackeray M M, et al. Electrochemical and structural properties of xLi2M\'O3·(1-x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M\'=Ti,Mn,Zr;0≤x≤0.3)[J]. Chem Mater, 2004,16(10):1996-2006.
[34]
Johnson C S, Li N, Thackeray M M, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes:xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7)[J]. Chem Mater, 2008,20(19):6095-6106.
[35]
Kang P, Kempgens S, Thackeray M M, et al. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M=Mn0.5-xNi0.5-xCo2x,0≤x≤0.5)[J]. J Mater Chem, 2007,17(20):2069-2077.
[36]
Lei C H, Baren[AKo?] J, Abraham D P, et al. Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy[J]. J Power Sources, 2008,178(1):422-433.
[37]
Park Y J, Hong Y S, Chang S H, et al. Structural investigation and electrochemical behaviour of Li[NixLi(13-2-3)Mn(2/3-x/3)]O2 compounds by a simple combustion method[J]. J Power Sources, 2004,129(2):288-295.
[38]
Wu Y, Manthiram A. Structural stability of chemically delithiated layered (1-z)Li[Li1/3Mn2/3]O2-zLi[Mn0.5-yNi0.5-yCo2y]O2 solid solution cathodes[J]. J Power Sources, 2008,183(2):749-754.
[39]
Guo X J, Li Y X, Yang Y, et al. Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2·(1-x)Li[Ni1/3Mn1/3Co1/3]O2(0≤x≤0.9) as cathode materials for lithium ion batteries[J]. J Power Sources, 2008,184(2):414-419.
[40]
Lu Z, Chen Z, Dahn J R. Lack of cation clustering in Li[NixLi13-2x3Mn2/3-x/3]O2(0
[41]
Park K S, Cho M H, Jin S J, et al. Design and analysis of triangle phase diagram for preparation of new lithium manganese oxide solid solutions with stable layered crystal structure[J]. J Power Sources, 2005,146(1-2):281-286.
[42]
Lu Z, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi13-2x3Mn2/3-x/3]O2 cells using in situ X-ray diffraction and electrochemical studies[J]. J Electrochem Soc, 2002,149(7):A815-A822.
[43]
Armstrong A R, Holzapfel M, Bruce P G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J Am Chem Soc, 2006,128(26):8694-8698.
[44]
Jarvis K A, Deng Z, Allard L F. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries:evidence of a solid solution[J]. Chem Mater, 2011,23(16):3614-3621.
[45]
Russouw M H, Thackeray M M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications[J]. Mater Res Bull, 1991,26(6):463-473.
[46]
Russouw M H, Liles D C, Thackeray M M. Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Li1.09Mn0.91O2[J]. J Solid State Chem, 1993,104(2):464-466.
[47]
Robertson A D, Bruce P G. The origin of electrochemical activity in Li2MnO3[J]. Chem Commun, 2002(23):2790-2791.
[48]
Robertson A D, Bruce P G. Mechanism of electrochemical activity in Li2MnO3[J]. Chem Mater, 2003,15(10):1984-1992.
[49]
Hong Y S, Park Y J, Ryu K S, et al. Charge/discharge behavior of Li[Ni0.20Li0.20Mn0.60]O2 and Li[Co0.20Li0.27Mn0.53]O2 cathode materials in lithium secondary batteries[J]. Solid State Ionics, 2005,176(11-12):1035-1042.
[50]
Kim J H, Park C W, Sun Y K. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials[J]. Solid State Ionics, 2003,164(1-2):43- 49.
[51]
Jain G, Yang J, Xu J J, et al. Synthesis, electrochemistry, and structural studies of lithium intercalation of a nanocrystalline Li2MnO3-like compound[J]. Chem Mater, 2005,17(15):3850-3860.
[52]
Kim J H, Sun Y K. Electrochemical performance of Li[LixNi(1-3x)/2Mn(1+x)/2]O2 cathode materials synthesized by a sol–gel method[J]. J Power Sources, 2003,119-121(suppl):166-170.
[53]
Whitfield P S, Niketic S, Davidson I J. Effects of synthesis on electrochemical, structural and physical properties of solution phases of Li2MnO3-LiNi1-xCoxO2[J]. J Power Sources, 2005,146(1-2):617-621.
[54]
Hwang B J, Wang C J, Chen C H, et al. Electrochemical properties of Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0≤x≤0.5) cathode materials prepared by a sol–gel process[J]. J Power Sources, 2005,146(1-2):658-663.
[55]
Sun Y, Shiosaki Y, Xia Y, et al. The preparation and electrochemical performance of solid solutions LiCoO2-Li2MnO3 as cathode materials for lithium ion batteries[J]. J Power Sources, 2006,159(2):1353-1359.
[56]
Sun Y, Xia Y, Shiosaki Y, et al. Preparation and electrochemical properties of LiCoO2-LiNi0.5Mn0.5O2-Li2MnO3 solid solutions with high Mn contents[J]. Electrochim Acta, 2006,51(26):5581-5586.
[57]
Jiang J, Dahn J R. Electrochemical and thermal studies of Li[NixLi(13-2x3)Mn(2/3-x/3)]O2 (x=1/12, 14, 512, and 1/2)[J]. Electrochim Acta, 2005,50(24):4778-4783.
[58]
Wu F, Lu H, Su Y, et al. Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries[J]. J Appl Electro Chem, 2010,40(4):783-789.
[59]
Lee D K, Park S H, Sun Y K, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method[J]. J Power Sources, 2006,162(2):1346-1350.
[60]
Lim J H, Bang H, Sun Y K, et al. Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries[J]. J Power Sources, 2009,189(1):571-575.
[61]
Johnson C S, Li N, Thackeray M M, et al. Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M=Mn,Ni,Co) in lithium batteries at 50℃[J]. Electrochem Commun, 2007,9(4):787-795.
[62]
Zhang L, Takada K, Ohta N, et al. Synthesis of (1-2x)LiNi1/2Mn1/2O2·xLi[Li1/3Mn2/3]O2·xLiCoO2(0≤x≤0.5) electrode materials and comparative study on cooling rate[J]. J Power Sources, 2005,146(1-2):598-601.
[63]
Zhang L, Takada K, Ohta N, et al. Synthesis and electrochemistry of layered 0.6LiNi0.5Mn0.5O2·xLi2MnO3·yLiCoO2 (x+y=0.4) cathode materials[J]. Mater Lett, 2004,58(25):3197-3200.
[64]
Kim G Y, Yi S B, Park Y J, et al. Electrochemical behaviors of Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathode series (0
[65]
Yu L, Qiu W, Lian F, et al. Comparative study of layered 0.65Li[Li1/3Mn2/3]O2·0.35LiMO2 (M=Co, Ni1/2Mn1/2 and Ni1/3Co1/3Mn1/3) cathode materials[J]. Mater Lett, 2008,62(17-18):3010-3013.
[66]
Yu L, Qiu W, Lian F, et al. Understanding the phenomenon of increasing capacity of layered 0.65Li[Li1/3Mn2/3]O2·0.35Li(Ni1/3Co1/3Mn1/3)O2[J]. J Alloys Compd, 2009,471(1-2):317-321.
[67]
Yu L, Yang H, Ai X, et al. Structural and electrochemical characterization of nanocrystalline Li[Li0.12Ni0.32Mn0.56]O2 synthesized by a polymer-pyrolysis route[J]. J Phys Chem B, 2005,109(3):1148-1154.
[68]
Yu L H, Cao Y L, Yang H X, et al. Preparation and electrochemical characterization of nanocrystalline Li[Li0.12Ni0.32Mn0.56]O2 pyrolyzed from polyacrylate salts[J]. Mater Chem Phys, 2004,88(2-3):353-356.
[69]
Kim J M, Tsuruta S, Kumagai N. Electrochemical properties of Li(Li(1-x)/3CoxMn(2-2x)/3)O2 (0≤x≤1) solid solutions prepared by poly-vinyl alcohol (PVA) method[J]. Electrochem Commun, 2007,9(1):103-108.
[70]
Cho J, Kim Y, Kim M G. Synthesis and characterization of Li[Ni0.41Li0.08Mn0.51]O2 nanoplates for Li battery cathode material[J]. J Phys Chem C, 2007,111(7):3192-3196.
[71]
Kim M G. Hong Y-S, Cho J. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode[J]. Chem Commun, 2009(2):218-220.