Pearl J F. Propagation and structuring in belief networks[J]. Artificial Intelligence, 1986, 29(3):241-288.
[2]
Lauritzen S L, Spiegelhalter D J. Local computations with probabilities on graphical structures and their application to expert systems (with discussion)[J]. Journal of the Royal Statistical Society Series B, 1988, 50(2):157-224.
[3]
Shenoy P, Shafer G. Axioms for probability and belief-function propagation/readings in uncertain reasoning[M]. Porland, USA: Morgan Kaufmann Publishers Inc, 1990:575-610.
[4]
厉海涛,金光,周经伦,等.贝叶斯网络推理算法综述[J].系统工程与电子技术,2008,30(5):935-939. Li Haitao,Jin Guang,Zhou Jinglun,et al. Survey of Bayesian network inference algorithms[J]. Systems Engineering and Electronics,2008,30(5):935-939.(in Chinese)
[5]
Hugin Expert. The leading decision support tool[EB/OL].[2012-09-12]. http://www.hugin.com.
[6]
Murphy K. Software packages for graphical models-bayesian networks[EB/OL].[2012-09-12]. http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html.
[7]
Koller D, Pfeffer A. Object-oriented Bayesian networks[C][C]//Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence. Providence, Rhode Island:[s.n.], 1997:302-313.
[8]
Fenton N E. The SERENE method manual (safety and risk evaluation using bayesian NEts), EC Project No. 22187 SERENE, SERENE/5.3/CSR/3053/R/1[EB/OL].[2012-09-12]. www.dcs.qmul.ac.uk/~norman/papers/serene.pdf
[9]
Neil M, Fenton N E, Nielsen L. Building large-scale Bayesian networks[J]. The Knowledge Engineering Review, 2000, 15(3):257-284.
[10]
Spirtes P, Glymour C, Scheines R. Causation, prediction, and search[C]//Proceedings of Adaptive Computation and Machine Learning. Boston: MIT Press, 2000.
[11]
Steck H. Constrained-based structural learning in Bayesian networks using finite data sets[D].[S.l]: Institute of der Informatik der Technischen University, 2001.
[12]
Chan H, Darwiche A. A distance measure for bounding probabilistic belief change[J]. International Journal of Approximate Reasoning, 2005, 38(2):149-174.
[13]
Cheng J, Greiner R, Kelly J, et al. Learning Bayesian networks from data: an information-theory based approach[J]. Artificial Intelligence, 2002, 137(1-2):43-90.
[14]
Neil M, Tailor M. Inference in hybrid Bayesian networks using dynamic discretization[J]. Statistics and Computing, 2007, 17(3):219-233.
[15]
Horvitz E, Heckerman D, Nathwani B. Heuristic abstraction in the decision-theoretic pathfinder system[C]//Proceedings of Symposium on Computer Applications in Medical Care. Washington D.C., USA: IEEE, 1989.
[16]
Andreassen S, Woldbye M, Falck B, et al. MUNIN: a causal probabilistic network for interpretation of electromyographic findings[C]//Proceedings of the 10th International Joint Conference on Artificial Intelligence. Milan, Italy: LJCAI Inc, 1987:366-372.
[17]
Breese J, Heckerman D. Decision-theoretic troubleshooting: a framework for repair and experiment[C]//Proceedings of the 12 Conference on Uncertainty in Artificial Intelligence. Porland, USA: Morgon Kaufmann Publisher Inc, 1996:124-132.
[18]
Heckerman D, Breese J S, Rommelse K. Decision-theoretic trouble shooting[J]. Communication of the ACM, 1995, 38(3):49-57.
[19]
Jensen F V, Kjerulff U, Kristiansen B, et al. The SACSO methodology for troubleshooting complex systems[J]. Journal of Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2000, 15(4):321-333.
[20]
Huang Y, McMurran R, Dhadyalla G. Probability based vehicle fault diagnosis: Bayesian network method[J]. Journal of Intelligent Manufacture, 2008, 19:301-311.
[21]
Scheiterer R S, Obradovic D, Tresp V. Tailored-to-fit bayesian network modelling of expert diagnostic knowledge[J]. Journal of VLSI Signal Processing, 2007, 49:301-316.
[22]
Xu B G. Intelligent fault inference for rotating flexible rotors using Bayesian belief network[J]. Expert Systems with Applications, 2012, 39(1):816-822.
[23]
朱永利, 王艳.基于贝叶斯网络的电网故障诊断[J].电力自动化设备, 2007, 27(7):33-36. Zhu Yongli, Wang Yan. Power system fault diagnosis based on Bayesian network[J]. Electric Power Automation Equipment, 2007, 27(7):33-36.(in Chinese)
[24]
程延伟, 谢永成, 李光升, 等.基于贝叶斯网络的车辆电源系统故障诊断方法[J].计算机工程, 2011, 37(23):251-253. Cheng Yanwei, Xie Yongcheng, Li Guangsheng, et al. Fault diagnosis method of vehicle power system based on Bayesian network[J]. Computer Engineering, 2011, 37(23):251-253.(in Chinese)
[25]
姜万录, 刘思远. 多特征信息融合的贝叶斯网络故障诊断方法研究[J].中国机械工程, 2010, 21(8):941-945. Jiang Wanglu, Liu Siyuan. Fault diagnosis approach study of Bayesian networks based on multi-characteristic information fusion[J]. China Mechanical Engineering, 2010, 21(8):941-945.(in Chinese)
[26]
赵文清, 朱永利, 王晓辉.基于组合贝叶斯网络的电力变压器故障诊断[J].电力自动化设备, 2009, 29(11):6-9. Zhao Wengqing, Zhu Yongli, Wang Xiaohui. Combinatorial Bayes network in fault diagnosis of power transformer[J]. Electric Power Automation Equipment, 2009, 29(11):6-9.(in Chinese)
[27]
Coleman A, Zalewski J. Intelligent fault detection and diagnostics in solar plants[C]//Proceedings of the 2011 IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS 2011).[S.l.]: IEEE, 2011:948-953.