全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Voronoi图的血管中心线提取方法

Keywords: X射线造影,中心线提取,Voronoi图

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决血管分割及中心线提取技术在提取血管分叉及细小血管时往往存在较大误差的问题,提出一种新的基于Voronoi图的中心线提取方法.该方法利用血管几何特性确定其中心线,有效抑制了图像灰度分布不均匀以及噪声的干扰.通过优化抽样方法有效利用血管的曲率信息,根据分叉结构与血管边界曲率差异提出不同的采样方式,在降低采样点数目的同时确保中心线提取的准确性与连续性.实验结果证明该方法具有良好的鲁棒性,获得的中心线提取误差小于0.42像素,能够快速并准确地在造影图像中提取出血管中心线,同时有效解决了分割血管分叉点时采样不连续的问题.

References

[1]  Blezek D J, Robb R A. Center line algorithm for virtual endoscopy based on chamfer distance transform and Dijkstra\'s single-source shortest-path algorithm[C]//Proceedings of Medical Imaging\'99 International Society for Optics and Photonics. San Diego: SPIE, 1999:225-233.
[2]  Ogniewicz R L, Kübler O. Hierarchic voronoi skeletons[J]. Pattern Recognition, 1995, 28(3):343-359.
[3]  Jian Y, Yongtian W, Songyuan T, et al. Multiresolution elastic registration of X-Ray angiography images using thin-plate spline[J]. IEEE Transactions on Nuclear Science, 2007, 54(1):152-166.
[4]  Songyuan T, Yongtian W, Yenwei C. Application of ICA to X-ray coronary digital subtraction angiography[J]. Neurocomputing, 2011, 79:168-172.
[5]  Cormen T H. Introduction to algorithms[M]. Boston, USA: The MIT Press, 2001.
[6]  Lee J, Beighley P, Ritman E, et al. Automatic segmentation of 3D micro-CT coronary vascular images[J]. Medical Image Analysis, 2007, 11(6):630-647.
[7]  Zheng S, Meiying T, Jian S. Sequential reconstruction of vessel skeletons from X-ray coronary angiographic sequences[J]. Computerized Medical Imaging and Graphics, 2010, 34(5):333-345.
[8]  Keil A. Dynamic variational level sets for cardiac 4D reconstruction[D]. Munich: Technical University Munich, 2010.
[9]  Schaap M, Metz C T, Walsum T, et al. Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms[J]. Medical Image Analysis, 2009, 13(5):701-714.
[10]  Kirbas C, Quek F. A review of vessel extraction techniques and algorithms[J]. ACM Computing Surveys, 2004, 36(2):81-121.
[11]  Shoujun Z, Jian Y, Yongtian W, et al. Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking[J]. BioMedical Engineering Online, 2010, 9(1):40.
[12]  Moreno P, Bernardino A, Santos-Victor J. Model based selection and classification of local features for recognition using Gabor filters[J]. Image Analysis and Recognition, 2006, 4142:181-192.
[13]  Aylward S R, Bullitt E. Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction[J]. IEEE Transactions on Medical Imaging, 2002, 21(2):61-75.
[14]  Shim H, Yun I D, Lee K M, et al. Partition-based extraction of cerebral arteries from CT angiography with emphasis on adaptive tracking[C]//Proceedings of Information Processing in Medical Imaging. New York: Springer, 2005:357-368.
[15]  Manniesing R, Viergever M A, Niessen W J. Vessel axis tracking using topology constrained surface evolution[J]. IEEE Transactions on Medical Imaging, 2007, 26(3):309-316.
[16]  Bitter I, Kaufman A E, Sato M. Penalized-distance volumetric skeleton algorithm[J]. IEEE Transactions on Visualization and Computer Graphics, 2001, 7(3):195-206.
[17]  Rohkohl C, Lauritsch G, Nottling A, et al. C-arm CT: reconstruction of dynamic high contrast objects applied to the coronary sinus[C]//Proceedings of Nuclear Science Symposium Conference Record. Dresden: IEEE, 2008:5113-5120.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133