Heumann E, Bar S. Diode-pumped continuous-wave green upconversion lasing of Er3+: LiLnFr using multipass pumping[J]. Optics Letters, 2002, 27(19):1699-1701.
[2]
罗昔贤,曹望和.稀土离子激活的稀土氧化物和稀土硫氧化物的蓝、绿、红上转换发光与光谱特性[J].中国科学B辑,2007,37(2):148-155. Luo Xixian,Cao Wanghe. Bluer,green and red upconversion and spectral characteristics of rare-earth doped oxides and oxysulfides[J]. Science in China,Series B,2007,37(2):148-155. (in Chinese)
[3]
李秀贤, 柏朝晖, 张希艳, 等.不同波长响应的Y2O2S:Er3+, Yb3+上转换发光材料的光谱特性[J].硅酸盐学报, 2011, 39(6):973-977. Li Xiuxian, Bai Zhaohui, Zhang Xiyan, et al. Spectral properties of Y2O2S:Er3+, Yb3+ up-conversion luminescence material excited with different wavelength[J]. Journal of the Chinese Ceramic Society, 2011, 39(6):973-977. (in Chinese)
[4]
Chen D Q, Yu Y L, Huang F, et al. Monodisperse upconversion Er3+/Yb3+: MFCl (M=Ca, Sr, Ba) nanocrystals synthesized via a seed-based chlorination route[J]. Chemical Communications, 2011, 47:11083-11085.
[5]
Lu L P, Zhang X Y, Bai Z H, et al. Rapid synthesis and characterization of extended range IR up-conversion material CaS: Eu, Sm[J]. Chinese Journal of Lasers, 2006, 33(4):561-564.
[6]
Song H L, Long Z, Hu Z G, et al. Hydrothermal growth and properties of micro-sized NaYF4 doped with rare earth ions[J]. Journal of Rare Earths (in Chinese), 2010, 28(3):287-292.
[7]
Kingsley J J, Patil K C. A novel combustion process for the synthesis of fine particle-aluminum and related oxide materials[J]. Materials Letters, 1988, 6(11/12):427-432.
[8]
宿新泰, 燕青芝, 葛昌纯.低温燃烧合成超细陶瓷微粉的最新研究[J].化学进展, 2005, 17(3):430-436. Su Xintai, Yan Qingzhi, Ge Changchun. Recent developments of low-temperature combustion synthesis of ultrafine ceramic powder[J]. Progress in Chemistry, 2005, 17(3):430-436. (in Chinese)
[9]
Singh V, Rai V K, Ledoux-Rak I, et al. Visible upconversion and infrared luminescence investigations of Al2O3 powders doped with Er3+, Yb3+ and Zn2+ ions[J]. Applied Physics B, Lasers and Optics, 2009, 97(4):805-809.
[10]
Pinol S, Najib M, Bastidas D M. Microstructure-conductivity relationship in Gd-and Sm-doped ceria-based electrolytes prepared by the acrylamide sol-gel-related method[J]. Journal of Solid State Electrochemistry, 2004, 8(9):650-654.
[11]
Sousa V C de, Morelli M R, Kiminami R G A. Combustion synthesis of ZnO powders[J]. Int J SHS, 1998, 7(2):311-320.
[12]
Ianos R, Barvinschi P. Solution combustion synthesis of calcium zirconate, CaZrO3, powders[J]. Journal of Solid State Chemistry, 2010, 183(3):491-496.
[13]
Meng J, Zhang N, Jiang D Y. Combustion synthesis of Eu3+-activated Y2Hf7O17 powders[J]. Journal of Nanoscience and Nanotechnology, 2010, 10 (3):2149-2151.
[14]
Shinde K P, Deshpande N G, Eom T. Solution-combustion synthesis of La0.65Sr0.35MnO3 and the magnetocaloric properties[J]. Materials Science and Engineering B, 2010, 167(3):202-205.
[15]
Wang F, Yang H B, Un Y, et al. An efficient approach for the direct synthesis of KNbO3 powders[J]. Materials and Manufacturing Processes, 2010, 25(7/9):994-997.
[16]
Luo S H, Tang Z L, Yao W H, et al. Low-temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders[J]. Microelectronic Engineering, 2003, 66(1/4):147-152.
[17]
Mimani T. Instant synthesis of nanoscale spinel aluminates[J]. Journal of Alloy and Compound, 2001, 315(1/2):123-128.
[18]
Jain S R, Adiga K C, Pai V R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures[J]. Combustion and Flame, 1981, 40:71-79.