全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锂离子电池健康状态估计与剩余寿命预测

DOI: 10.15918/j.tbit1001-0645.2015.10.016

Keywords: 锂离子电池,健康状态,剩余有效工作时间,健康状态变量,支持向量回归机粒子滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对锂离子电池健康状态(state-of-health,SOH)估计与剩余有效工作时间(remainingusefullife,RUL)预测进行探讨.提出了一种利用SOH参数反应电池状况,并且建模预测电池RUL的方法.改进了现有研究成果在RUL预测中不能更新其概率密度的缺陷.同时应用支持向量回归机(SVR-PF)改进标准粒子滤波算法具有粒子贫化效应的缺点.仿真结果表明提出的参数准确地反应了电池的状况,同时也准确地预测了电池的RUL;SVR-PF具有比粒子滤波更强的平滑与预测能力.

References

[1]  Xing Y, Ma E, Tsui K, et al. Battery management systems in electric and hybrid vehicles[J]. Energies, 2011,4(11):1840-1857.
[2]  Schmidt A, Bitzer M, Imre A, et al. Model-based distinction and quantification of capacity loss and rate capability fade in li-ion batteries[J]. J Power Sources, 2010,195:7634-7638.
[3]  Vetter J, Novak P, Wagner M. Aging mechanisms in lithium-ion batteries[J]. J Power Sources, 2009,147:269-281.
[4]  Zhang J, Lee J. A review on prognostics and health monitoring of li-ion battery[J]. J Power Sources, 2011,196:6007-6014.
[5]  Kazuhiko T, Masahiro I, Kazuo T, et al. Quick testing of batteries in lithium-ion battery packs with impedance-measuring technology[J]. J Power Sources, 2004,128:67-75.
[6]  Jungst R, Nagasubramanian G, Case H, et al. Accelerated calendar and pulse life analysis of lithium-ion cells[J]. J Power Sources, 2003,119(1):870-873.
[7]  He W, Williard N, Osterman M, et al. Prognostics of lithium-ion batteries based on dempster-shafer theory and the bayesian monte carlo method[J]. J Power Sources, 2011,196:10314-10321.
[8]  Saha B, Goebel K, Poll S, et al. Prognostics methods for battery health monitoring using a Bayesian framework[J]. IEEE Transactions on Instrumentation and Measurement, 2009,58(2):291-296.
[9]  Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear/non-gaussian bayesian state estimation[C]//Proceedings of IEE Proceedings-Radar, Sonar & Navigation.[S.l.]:IET Digital Library, 1993,140(2):107-113.
[10]  Arulampalam M, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002,50(2):174-188.
[11]  Bishop C M. Pattern recognition and machine learning[M].[S.l.]:Springer, 2006:339-344.
[12]  Vapnik V. The nature of statistical learning[M].[S.l.]:Springer, 1995:225-259.
[13]  Kozlowski J. Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques[C]//Proceedings of 2003 Aerospace Conference. Big Sky, Montana:IEEE, 2003:3257-3270.
[14]  Chang B, Park S. Electrochemical impedance spectroscopy[J]. Annual Review of Analytical Chemistry, 2010,3(1):207-229.
[15]  Goebel K, Saha B, Saxena A, et al. Prognostics in battery health management[J]. IEEE Instrumentation & Measurement Magazine, 2008,11(4):33-40.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133