交叉积是通过共变系统生成von Neumann代数的有力工具. 经典情形下, von Neumann代数交叉积的作用空间非常抽象. 为使其作用空间更加简单, 定义了有限型共变系统, 通过这个系统构造的von Neumann代数与经典情形同构,从而给出有限型共变系统交叉积的简明刻画
References
[1]
Nakamura M, Takeda Z. On some elementary properties of the crossed product of von Neumann algebra[J]. Proc Japan Acad, 1958,34:489-494.
[2]
Turumaru T. Crossed product of operator algebra[J]. Tohoku Math J, 1958,10:355-365.
[3]
Doplicher S, Kastler D, Robinson D. Covariance algebra in field theory and statistical mechanics[J]. Comm Math Phys, 1966,3:1-28.
[4]
Nakagami Y, Takesaki M. Duality for crossed products of von Neumann algebra[M]. New York: Springer-Verlag, 1979.
[5]
Exel R. Crossed-products by finite index endomorphisms and KMS states[J]. J Func Anal, 2003,199:153-188.
[6]
Royer D. The crossed product by a partial endomorphism and the covariance algebra[J]. J Math Anal Appl, 2006,323:33-41.
[7]
Conti R, Vasselli E. Extension of automorphisms to C*-crossed products with on non-trivial center[J]. J Operator Theory, 2010,64:417-434.
[8]
Kwasniewski B K, Lebedev A V. Crossed products by endomorphisms and reduction of relations in relative Cuntz-Pimsner algebras[J]. J Func Anal, 2013,264:1806-1847.
[9]
李炳仁.算子代数[M].北京:科学出版社,1988. Li Bingren. Operator algebra[M]. Beijing: Science Press, 1988.(in Chinese)
[10]
Sunder V S. An invitation to von Neumann algebras[M]. New York: Spring-Verlag, 1987.
[11]
Jones V F R. Subfactor and knots[M]. [S.l.]: American Mathematical Soc, 1991.