全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有限型共变系统的交叉积

DOI: 10.15918/j.tbit1001-0645.2015.06.019

Keywords: 共变系统 交叉积 忠实迹 von Neumann代数

Full-Text   Cite this paper   Add to My Lib

Abstract:

交叉积是通过共变系统生成von Neumann代数的有力工具. 经典情形下, von Neumann代数交叉积的作用空间非常抽象. 为使其作用空间更加简单, 定义了有限型共变系统, 通过这个系统构造的von Neumann代数与经典情形同构,从而给出有限型共变系统交叉积的简明刻画

References

[1]  Nakamura M, Takeda Z. On some elementary properties of the crossed product of von Neumann algebra[J]. Proc Japan Acad, 1958,34:489-494.
[2]  Turumaru T. Crossed product of operator algebra[J]. Tohoku Math J, 1958,10:355-365.
[3]  Doplicher S, Kastler D, Robinson D. Covariance algebra in field theory and statistical mechanics[J]. Comm Math Phys, 1966,3:1-28.
[4]  Nakagami Y, Takesaki M. Duality for crossed products of von Neumann algebra[M]. New York: Springer-Verlag, 1979.
[5]  Exel R. Crossed-products by finite index endomorphisms and KMS states[J]. J Func Anal, 2003,199:153-188.
[6]  Royer D. The crossed product by a partial endomorphism and the covariance algebra[J]. J Math Anal Appl, 2006,323:33-41.
[7]  Conti R, Vasselli E. Extension of automorphisms to C*-crossed products with on non-trivial center[J]. J Operator Theory, 2010,64:417-434.
[8]  Kwasniewski B K, Lebedev A V. Crossed products by endomorphisms and reduction of relations in relative Cuntz-Pimsner algebras[J]. J Func Anal, 2013,264:1806-1847.
[9]  李炳仁.算子代数[M].北京:科学出版社,1988. Li Bingren. Operator algebra[M]. Beijing: Science Press, 1988.(in Chinese)
[10]  Sunder V S. An invitation to von Neumann algebras[M]. New York: Spring-Verlag, 1987.
[11]  Jones V F R. Subfactor and knots[M]. [S.l.]: American Mathematical Soc, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133