Namkung J, Coffey C S. Plastic deformation rate and initiation of crystalline explosives[C]//Proceedings of CP620, Shock Compression of Condensed Matter. Atlanta, Georgia, USA: [s.n.], 2001:1003-1006.
[2]
Zerilli F J, Guirguis R H, Coffey C S. A burn model based on heating due to shear flow: proof of principle calculations[C]//Proceedings of the 12th International Symposium on Detonation. San Diego, USA: [s.n.], 2002:36-42.
[3]
Meuken B, Martinez P M, Verbeek H J, et al. Shear initiated reactions in energetic and reactive materials[C]//Proceedings of Mater Res Soc Symp. Atlanta, Georgia, USA: [s.n.], 2006:59-66.
[4]
Foster J C, Christopher F R, Wilson L L, et al. Mechanical ignition of combustion in condensed phase high explosives[C]//Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Amherst, MA, USA: [s. n.], 1997:389-392.
[5]
Dienes J K, Kershner J D. Multiple-shock initiation via statistical crack mechanics[C]//Proceedings of the 11th Detonation Symposium. Snowmass Village, USA: [s.n.], 1998:717-724.
[6]
Dienes J K, Kershner J D. Crack dynamics and explosive burn via generalized coordinates[J]. J Comput Aided Mater Design, 2001,31:217-237.
[7]
Zuo Q H, Dienes J K, Middleditch J, et al. Modeling the damage in ceramic armor via statistical crack mechanics[C]//Proceedings of the SEM Annual Conference and Exposition. Allata, USA: [s.n.], 2003.
[8]
Zuo Q H, Dienes J K. On the stability of penny-shaped cracks with friction: the five types of brittle behavior[J]. Int J Solids Struct, 2005,42:1309-1326.