Amari S. Differential geometrical methods in statistics[M]. [S.l.]: Springer Lecture Notes in Statistics, 1985.
[2]
Amari S, Nagaoka H. Methods of information geometry[M]. Oxford: Oxford University Press, 2000.
[3]
Takafumi K. Pool-based active learning with optimal sampling distribution and its information geometrical interpretation[J]. Neurocomputing, 2007, 71: 353-362.
[4]
Amari S. The EM algorithm and information geometry in neural network learning [J]. Neural Computation, 1995,7:13-18.
[5]
Peng L, Sun H, Sun D, et al. The geometric structures and instability of entropic dynamical models[J]. Advances in Mathematics, 2011,227:459-471.
[6]
Cao L, Sun H, Zhang Z. The geometric description of the fibre bundle surface for the Birkhoff system[J]. Chinese Physics Letters, 2009,26:1-2.
[7]
Zhang Z, Sun H ,Zhong F. Natural gradient-projection algorithm for distribution control[J]. Optimal Control Application and Methods, 2009,30:495-504.
[8]
Cengel Y, Boles M. Thermodynamics: an engineering approach[M]. 4th ed. [S.l.]: McGraw-Hill Science, 2001.
[9]
Do Carmo M. Riemannian geometry[M]. Boston: Birkhuser, 1992.
[10]
Casetti L, Pettini M, Cohen E. Geometric approach to Hamiltonian dynamics and statistical mechanics[J]. Physics Reports A, 2000,337:237-341.
[11]
Casetti L, Clementi C, Pettini M. Riemannian theory of Hamiltonian chaos and Lyapunov exponents[J]. Physical Review E, 1996,54:5969-5984.
[12]
Brody D,Rivier N. Geometrical aspects of statistical mechanics[J]. Physical Review E, 1995,51:1006-1011.