|
重庆大学学报 2009
木材导热系数的支持向量回归预测DOI: 10.11835/j.issn.1000-582X.2009.08.019 Keywords: 木材,导热系数,支持向量机,粒子群算法,留一交叉验证法,回归分析,预测 Abstract: 根据木材在不同影响因素(密度、含水率和比重)下沿横纹方向(包括径向和弦向)的导热系数的实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立了木材沿不同方向的导热系数的预测模型,并与通过类比法(ANA)导出的理论模型和BP神经网络(BPNN)模型进行了比较。结果表明:基于相同的训练样本和检验样本,木材导热系数的SVR模型比其ANA模型或BPNN模型具有更高的预测精度;增加训练样本数有助于提高SVR预测模型的泛化能力;基于留一交叉验证法(LOOCV)的SVR模型预测的最大绝对百分误差(MPE)、平均绝对误差(MAE)和平均绝对百分误差(MAPE)均为最小。因此,SVR是一种预测木材导热系数的有效方法。
|