全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电力日负荷数据特征模式智能提取方法

DOI: 10.11835/j.issn.1000-582X.2006.02.014

Keywords: 日负荷,特征模式,软聚类,神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

电力负荷数据中可能包含各种坏数据,严重影响负荷预测精度,因此需要从这些合有噪声的日负荷数据中提取出负荷的特征模式,以便对负荷数据进行清洗.以软聚类思想为指导,通过模糊C均值聚类算法及Kohonen自组织特征映射神经网络的互补结合,提出了日负荷特征模式的智能提取方法,该方法不但具有辨识精度高、收敛速度快的优点,而且具有对数据的动态处理能力,为精确的负荷预测和准确的系统分析做好了数据上的准备,对重庆城区供电局负荷数据的实例分析说明了方法的高效性.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133