This document will from first principles delineate the degree of flatness, or deviations from, in early universe models. We will, afterwards, make comparison with recent results we have looked at concerning metric tensor fluctuations and comment upon the role of what early universe gravitational energy may play a role in the presumed deviation from flat space results. Note that N~Sinitial(graviton)~1037?will be tied into the presumed results for initial state density, in ways we will comment upon, leading to observations which are supporting the physics given by Equation (26) of this document as with regards to Gravitational waves, from relic conditions. The deviations from flat space may help confirm the conclusions given by Buchert, Carfora, Kolb, and Wiltshire allegedly refuting the claim by Green and Wald that “the standard FLRW model approximates our Universe extremely well on all scales, except close to strong field astrophysical objects”, as well as give additional analysis appropriate for adding detail to expanding experimental procedures for investigating non FLRW models such as the Polynomial Inflation models as given by Kobayashi, and Seto, as well as other nonstandard cosmologies, as brought up by Corda, and other researchers. As well as improve upon post Bicep 2 measurements which will avoid GW signatures from interstellar dust, as opposed to relic GW. We hope that our approach may help in the differentiation between different cosmology models. Most importantly, our procedure may help, with refinement of admissible frequency range, avoid the problem of BICEP 2, which had its presumed GW signals from presumed relic conditions identical to dust induced frequencies, as so identified by the Planck collaboration in reference [25] which we comment upon in the conclusion.
References
[1]
Jack Ng, Y. (2007) Holographic Foam, Dark Energy and Infinite Statistics. Physics Letters B, 657, 10-14.
http://dx.doi.org/10.1016/j.physletb.2007.09.052
[2]
Will, C. (2015) Was Einstein Right? A Centenary Assessment. In: Ashtekar, A., Berger, B., Isenberg, J. and MacCallum, M., Eds., General Relativity and Gravitation, A Centennial Perspective, Cambridge University Press, Cambridge, UK, 49-96. http://dx.doi.org/10.1017/cbo9781139583961.004
[3]
Will, C. (2014) The Confrontation between General Relativity and Experiment.
http://relativity.livingreviews.org/Articles/lrr-2014-4/download/lrr-2014-4Color.pdf
[4]
Katti, A. (2013) The Mathematical Theory of Special and General Relativity. CreateSpace Independent Publishing, North Charleston.
[5]
Beckwith, A. (2015) Geddanken Experiment for Refining the Unruh Metric Tensor Uncertainty Principle Via Schwartzshield Geometry and Planckian Space-Time with Initial Non Zero Entropy and Applying the Riemannian- Penrose Inequality and the Initial Kinetic Energy. http://vixra.org/abs/1509.0173
[6]
Goldhaber, A. and Nieto, M. (2010) Photon and Graviton Mass Limits. Reviews of Modern Physics, 82, 939-979.
http://arxiv.org/abs/0809.1003
http://dx.doi.org/10.1103/RevModPhys.82.939
[7]
Haggard, H.M. and Rovelli, C. (2014) Black, Hole Fireworks: Quantum Gravity Effects outside the Horizon Spark Black to White Hole Tunneling. http://arxiv.org/abs/1407.0989
[8]
Turok, N. (2015) A Perfect Bounce. http://www.researchgate.net/publication/282580937_A_Perfect_Bounce
[9]
Kolb, E.W. and Turner, M.S. (1990) The Early Universe. Addison-Wesley Publishing Company, The Advanced Book Program, Redwood City.
[10]
Unruh, W.G. (1986) Why Study Quantum Theory? Canadian Journal of Physics, 64, 128-130.
http://dx.doi.org/10.1139/p86-019
[11]
Unruh, W.G. (1986) Erratum: Why Study Quantum Gravity? Canadian Journal of Physics, 64, 1453.
http://dx.doi.org/10.1139/p86-257
[12]
Adamek, J., Clarkson, C., Durrer, R. and Kunz, M. (2015) Does Small Scale Structure Significantly Affect Cosmological Dynamics? Physical Review Letters, 114, Article ID: 051302. http://arxiv.org/abs/1408.2741
http://dx.doi.org/10.1103/PhysRevLett.114.051302
[13]
Buchert, T., Carifora, M., Kolb, E. and Wilkshire, D. (2015) Is There Proof That Backreaction of Inhomogeneities Is Irrelevant in Cosmology? Quantum Gravity, 32, Article ID: 21521. http://arxiv.org/abs/1505.07800,15,Oct,2015,Class
[14]
Green, S.R. and Wald, R.M. (2011) A New Framework for Analyzing the Effects of Small Scale Inhomogeneities in Cosmology. Physical Review D, 83, Article ID: 084020. http://arxiv.org/abs/1011.4920
[15]
Green, S.R. and Wald, R.M. (2012) Newtonian and Relativistic Cosmologies. Physical Review D, 85, Article ID: 063512. http://arxiv.org/abs/1111.2997
[16]
Green, S.R. and Wald, R.M. (2013) Examples of Backreaction of Small Scale Inhomogeneities in Cosmology. Physical Review D, 87, Article ID: 124037. http://arxiv.org/abs/1304.2318
[17]
Green, S.R. and Wald, R.M. (2014) How Well Is Our Universe Described by an FLRW Model? Classical and Quantum Gravity, 31, Article ID: 234003. http://arxiv.org/abs/1407.8084
[18]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. http://arxiv.org/abs/0905.2502
http://dx.doi.org/10.1142/S0218271809015904
[19]
Van Den Broeck, C. (2015) Gravitational Wave Searches with Advanced LIGO and Advanced Virgo. LIGO Document Number P1500064. http://arxiv.org/abs/1505.04621
[20]
Kofman, L. (2008) Preheating after Inflation. In: Lemoine, M., Martin, J. and Peter, P., Eds., Inflationary Cosmology (Lecture Notes in Physics 738), Springer Verlag, Heidelberg, 55-78.
[21]
Beckwith, A. (2011) Detailing Minimum Parameters for the Red Shift, Frequency, Strain, and Wavelength of Gravitational Waves/Gravitons, and Impact upon GW Astronomy for Experimentally Falsifiable Measurements to Evaluate Current Models of Cosmology. Apeiron, 18, 321-351
[22]
Corda, C. (2010) Information on the Inflaton Field from the Spectrum of Relic Gravitational Waves. General Relativity and Gravitation, 42, 1323-1333. http://dx.doi.org/10.1007/s10714-009-0895-6
[23]
Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Hackensack.
[24]
Das, S. and Souradeep, T. (2014) SCoPE: An Efficient Method of Cosmological Parameter Estimation.
http://arxiv.org/abs/1403.1271
[25]
Li, S.Y., Xia, J.Q., Li, M.Z., Li, H. and Zhang, X.M. (2015) Primordial Gravitational Waves Measurements and Anisotropies of CMB Polarization Rotation. http://arxiv.org/pdf/1506.03526.pdf
[26]
Planck Collaboration, Adams, R., et al. (2014) Planck Intermediate Results. XXX. The Angular Power Spectrum of Polarized Dust Emission at Intermediate and High Galactic Latitudes. http://arxiv.org/abs/1409.5738
[27]
Corda, C. (2008) Massive Gravitational Waves from the R2 Theory of Gravity: Production and Response of Interferometers. International Journal of Modern Physics A, 23, 1521-1535. http://arxiv.org/abs/0711.4917
http://dx.doi.org/10.1142/S0217751X08038603
[28]
Starobinsky, A.A. (1980) A New Type of Isotropic Cosmological Models without Singularity. Physics Letters B, 91, 99-102. http://dx.doi.org/10.1016/0370-2693(80)90670-X
[29]
Rovelli, C. and Vidotto, F. (2015) Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge University Press, Cambridge.
[30]
Galloway, G., Miao, P. and Schoen, R. (2015) Initial Data and the Einstein Constraints. In: Ashtekar, A., Berger, B., Isenberg, J. and MacCallum, M., Eds., General Relativity and Gravitation, A centennial Perspective, Cambridge University Press, Cambridge, UK, 412-448.