Although mistranslation is commonly believed to be deleterious, recent evidence indicates that mistranslation can be actively regulated and be beneficial in stress response. Methionine mistranslation in mammalian cells is regulated by reactive oxygen species where cells deliberately alter the proteome through incorporating Met at non-Met positions to enhance oxidative stress response. However, it was not known whether specific, mistranslated mutant proteins have distinct activities from the wild-type protein whose sequence is restrained by the genetic code. Here, we show that Met mistranslation with and without Ca2+ overload generates specific mutant Ca2+/calmodulin-dependent protein kinase II (CaMKII) proteins substituting non-Met with Met at multiple locations. Compared to the genetically encoded wild-type CaMKII, specific mutant CaMKIIs can have distinct activation profiles, intracellular localization and enhanced phenotypes. Our results demonstrate that Met-mistranslation, or “Met-scan” can indeed generate mutant proteins in cells that expand the activity profile of the wild-type protein, and provide a molecular mechanism for the role of regulated mistranslation.
References
[1]
Netzer N, Goodenbour JM, David A, Dittmar KA, Jones RB, et al. (2009) Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462: 522–526. doi: 10.1038/nature08576. pmid:19940929
[2]
Moura GR, Carreto LC, Santos MA (2009) Genetic code ambiguity: an unexpected source of proteome innovation and phenotypic diversity. Curr Opin Microbiol 12: 631–637. doi: 10.1016/j.mib.2009.09.004. pmid:19853500
[3]
Pan T (2013) Adaptive Translation as a Mechanism of Stress Response and Adaptation. Annu Rev Genet 47: 139–155. doi: 10.1146/annurev-genet-111212-133522. pmid:23988117
[4]
Javid B, Sorrentino F, Toosky M, Zheng W, Pinkham JT, et al. (2014) Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc Natl Acad Sci U S A 111: 1132–1137. doi: 10.1073/pnas.1317580111. pmid:24395793
[5]
Fan Y, Wu J, Ung MH, De Lay N, Cheng C, et al. (2015) Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Res 43: 1740–1748. doi: 10.1093/nar/gku1404. pmid:25578967
[6]
Lee JY, Kim DG, Kim BG, Yang WS, Hong J, et al. (2014) Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation against oxidative stresses. J Cell Sci 127: 4234–4245. doi: 10.1242/jcs.152470. pmid:25097229
[7]
Wiltrout E, Goodenbour JM, Frechin M, Pan T (2012) Misacylation of tRNA with methionine in Saccharomyces cerevisiae. Nucleic Acids Res 40: 10494–10506. doi: 10.1093/nar/gks805. pmid:22941646
[8]
Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3: 175–190. pmid:11994750 doi: 10.1038/nrn753
[9]
Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, et al. (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133: 462–474. doi: 10.1016/j.cell.2008.02.048. pmid:18455987
[10]
Erickson JR, He BJ, Grumbach IM, Anderson ME (2011) CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 91: 889–915. doi: 10.1152/physrev.00018.2010. pmid:21742790
[11]
He BJ, Joiner ML, Singh MV, Luczak ED, Swaminathan PD, et al. (2011) Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat Med 17: 1610–1618. doi: 10.1038/nm.2506. pmid:22081025
[12]
Bingol B, Wang CF, Arnott D, Cheng D, Peng J, et al. (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140: 567–578. doi: 10.1016/j.cell.2010.01.024. pmid:20178748
[13]
Erickson JR, Pereira L, Wang L, Han G, Ferguson A, et al. (2013) Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502: 372–376. doi: 10.1038/nature12537. pmid:24077098
[14]
Stutzmann GE, Mattson MP (2011) Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 63: 700–727. doi: 10.1124/pr.110.003814. pmid:21737534
[15]
Thalhammer A, Rudhard Y, Tigaret CM, Volynski KE, Rusakov DA, et al. (2006) CaMKII translocation requires local NMDA receptor-mediated Ca2+ signaling. EMBO J 25: 5873–5883. pmid:17124502 doi: 10.1038/sj.emboj.7601420
[16]
Lemieux M, Labrecque S, Tardif C, Labrie-Dion E, Lebel E, et al. (2012) Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses. J Cell Biol 198: 1055–1073. doi: 10.1083/jcb.201202058. pmid:22965911
[17]
Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284: 162–166. pmid:10102820 doi: 10.1126/science.284.5411.162
[18]
Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287: C817–833. pmid:15355853 doi: 10.1152/ajpcell.00139.2004
[19]
Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 291: C1082–1088. pmid:16760264 doi: 10.1152/ajpcell.00217.2006
[20]
Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed) 14: 1197–1218. doi: 10.2741/3303
Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, et al. (2009) Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 119: 2925–2941. doi: 10.1172/JCI38857. pmid:19741297
[23]
Gunter TE, Buntinas L, Sparagna GC, Gunter KK (1998) The Ca2+ transport mechanisms of mitochondria and Ca2+ uptake from physiological-type Ca2+ transients. Biochim Biophys Acta 1366: 5–15. pmid:9714709 doi: 10.1016/s0005-2728(98)00117-0
[24]
Joiner ML, Koval OM, Li J, He BJ, Allamargot C, et al. (2012) CaMKII determines mitochondrial stress responses in heart. Nature 491: 269–273. doi: 10.1038/nature11444. pmid:23051746
[25]
Reynolds NM, Lazazzera BA, Ibba M (2010) Cellular mechanisms that control mistranslation. Nat Rev Microbiol 8: 849–856. doi: 10.1038/nrmicro2472. pmid:21079633
[26]
Miranda I, Silva-Dias A, Rocha R, Teixeira-Santos R, Coelho C, et al. (2013) Candida albicans CUG mistranslation is a mechanism to create cell surface variation. MBio 4: e00285–00213. doi: 10.1128/mBio.00285-13. pmid:23800396
[27]
Li L, Boniecki MT, Jaffe JD, Imai BS, Yau PM, et al. (2011) Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites. Proc Natl Acad Sci U S A 108: 9378–9383. doi: 10.1073/pnas.1016460108. pmid:21606343
[28]
Bacher JM, Schimmel P (2007) An editing-defective aminoacyl-tRNA synthetase is mutagenic in aging bacteria via the SOS response. Proc Natl Acad Sci U S A 104: 1907–1912. pmid:17264207 doi: 10.1073/pnas.0610835104
[29]
Griffith LC, Lu CS, Sun XX (2003) CaMKII, an enzyme on the move: regulation of temporospatial localization. Mol Interv 3: 386–403. pmid:14993460 doi: 10.1124/mi.3.7.386
[30]
Luczak ED, Anderson ME (2014) CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol 73: 112–116. doi: 10.1016/j.yjmcc.2014.02.004. pmid:24530899
[31]
Chao LH, Stratton MM, Lee IH, Rosenberg OS, Levitz J, et al. (2011) A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin- dependent kinase II holoenzyme. Cell 146: 732–745. doi: 10.1016/j.cell.2011.07.038. pmid:21884935
[32]
Moghal A, Mohler K, Ibba M (2014) Mistranslation of the genetic code. FEBS Lett 588: 4305–4310. doi: 10.1016/j.febslet.2014.08.035. pmid:25220850
[33]
Ling J, Cho C, Guo LT, Aerni HR, Rinehart J, et al. (2012) Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger. Mol Cell 48: 713–722. doi: 10.1016/j.molcel.2012.10.001. pmid:23122414
[34]
Ledoux S, Olejniczak M, Uhlenbeck OC (2009) A sequence element that tunes Escherichia coli tRNA(Ala)(GGC) to ensure accurate decoding. Nat Struct Mol Biol 16: 359–364. doi: 10.1038/nsmb.1581. pmid:19305403
[35]
Schrader JM, Uhlenbeck OC (2011) Is the sequence-specific binding of aminoacyl-tRNAs by EF-Tu universal among bacteria? Nucleic Acids Res 39: 9746–9758. doi: 10.1093/nar/gkr641. pmid:21893586
[36]
Koenig T, Menze BH, Kirchner M, Monigatti F, Parker KC, et al. (2008) Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res 7: 3708–3717. doi: 10.1021/pr700859x. pmid:18707158
[37]
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372. doi: 10.1038/nbt.1511. pmid:19029910
[38]
Mishra DP, Pal R, Shaha C (2006) Changes in cytosolic Ca2+ levels regulate Bcl-xS and Bcl-xL expression in spermatogenic cells during apoptotic death. J Biol Chem 281: 2133–2143. pmid:16301318 doi: 10.1074/jbc.m508648200
[39]
Villa P, Kaufmann SH, Earnshaw WC (1997) Caspases and caspase inhibitors. Trends Biochem Sci 22: 388–393. pmid:9357314 doi: 10.1016/s0968-0004(97)01107-9
[40]
Quevillon-Cheruel S, Collinet B, Tresaugues L, Minard P, Henckes G, et al. (2007) Cloning, production, and purification of proteins for a medium-scale structural genomics project. Methods Mol Biol 363: 21–37. pmid:17272835 doi: 10.1007/978-1-59745-209-0_2
[41]
McManaman JL, Bain DL (2002) Structural and conformational analysis of the oxidase to dehydrogenase conversion of xanthine oxidoreductase. J Biol Chem 277: 21261–21268. pmid:11914370 doi: 10.1074/jbc.m200828200