全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Viral Transmission Dynamics at Single-Cell Resolution Reveal Transiently Immune Subpopulations Caused by a Carrier State Association

DOI: 10.1371/journal.pgen.1005770

Full-Text   Cite this paper   Add to My Lib

Abstract:

Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22) throughout a population of its host (Salmonella Typhimurium) at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host.

References

[1]  Rohwer F. Global phage diversity. Cell. 2003;113: 141. pmid:12705861 doi: 10.1016/s0092-8674(03)00276-9
[2]  Pal C, Maciá MD, Oliver A, Schachar I, Buckling A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature. 2007;450: 1079–1081. pmid:18059461 doi: 10.1038/nature06350
[3]  Suttle CA. Marine viruses–major players in the global ecosystem. Nat Rev Microbiol. 2007;5: 801–812. pmid:17853907 doi: 10.1038/nrmicro1750
[4]  Breitbart M. Marine Viruses: Truth or Dare. Annu Rev Marine Sci. 2012;4: 425–448. doi: 10.1146/annurev-marine-120709-142805
[5]  Seed KD, Yen M, Shapiro BJ, Hilaire IJ, Charles RC, Teng JE, et al. Evolutionary consequences of intra-patient phage predation on microbial populations. eLife. 2014;3: e03497. doi: 10.7554/eLife.03497. pmid:25161196
[6]  Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann M-L, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003;6: 417–424. pmid:12941415 doi: 10.1016/s1369-5274(03)00086-9
[7]  Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68: 560–602. pmid:15353570 doi: 10.1128/mmbr.68.3.560-602.2004
[8]  McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH. High frequency of horizontal gene transfer in the oceans. Science. 2010;330: 50–50. doi: 10.1126/science.1192243. pmid:20929803
[9]  Campbell A. The future of bacteriophage biology. Nat Rev Genetics. 2003;4: 471–477. doi: 10.1038/nrg1089
[10]  Roucourt B, Lavigne R. The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ Microbiol. 2009;11: 2789–2805. doi: 10.1111/j.1462-2920.2009.02029.x. pmid:19691505
[11]  Philosof A, Battchikova N, Aro E-M, Béjà O. Marine cyanophages: tinkering with the electron transport chain. ISME J. 2011;5: 1568–1570. doi: 10.1038/ismej.2011.43. pmid:21509045
[12]  Susskind MM, Botstein D. Molecular genetics of bacteriophage P22. Microbiol Rev. 1978;42: 385–413. pmid:353481
[13]  Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife. 2015;4: e08490. doi: 10.7554/elife.08490
[14]  Ptashne M. A genetic switch: phage lambda revisited. Inglis J, Gann A, editors. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2004.
[15]  Comeau AM, Hatfull GF, Krisch HM, Lindell D, Mann NH, Prangishvili D. Exploring the prokaryotic virosphere. Res Microbiol. 2008;159: 306–313. doi: 10.1016/j.resmic.2008.05.001. pmid:18639443
[16]  Schuch R, Fischetti VA. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PloS one. 2009;4: e6532. doi: 10.1371/journal.pone.0006532. pmid:19672290
[17]  Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13: 278–284. pmid:15936660 doi: 10.1016/j.tim.2005.04.003
[18]  Wommack KE, Colwell RR. Virioplankton: Viruses in Aquatic Ecosystems. Microbiol Mol Biol Rev. 2000;64: 69–114. pmid:10704475 doi: 10.1128/mmbr.64.1.69-114.2000
[19]  Little JW, Michalowski CB. Stability and instability in the lysogenic state of phage Lambda. J Bacteriol. 2010;192: 6064–6076. doi: 10.1128/JB.00726-10. pmid:20870769
[20]  Zeng L, Skinner SO, Zong C, Sippy J, Feiss M, Golding I. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell. 2010;141: 682–691. doi: 10.1016/j.cell.2010.03.034. pmid:20478257
[21]  Ballesteros-Plaza D, Holguera I. Phage ?29 protein p1 promotes replication by associating with the FtsZ ring of the divisome in Bacillus subtilis. Proc Natl Acad Sci. 2013;110: 12313–12318 doi: 10.1073/pnas.1311524110. pmid:23836667
[22]  Dang VT, Sullivan MB. Emerging methods to study bacteriophage infection at the single-cell level. Front Microbiol. 2014;5: 724. doi: 10.3389/fmicb.2014.00724. pmid:25566233
[23]  Shao Q, Hawkins A, Zeng L. Phage DNA dynamics in cells with different fates. Biophys J. 2015;108: 2048–2060. doi: 10.1016/j.bpj.2015.03.027. pmid:25902444
[24]  Cenens W, Mebrhatu MT, Makumi A, Ceyssens P-J, Lavigne R, Van Houdt R, et al. Expression of a novel P22 ORFan gene reveals the phage carrier state in Salmonella Typhimurium. PLoS Genet. 2013;9: e1003269. doi: 10.1371/journal.pgen.1003269. pmid:23483857
[25]  Austin S, Li Y. The P1 plasmid is segregated to daughter cells by a “capture and ejection” mechanism coordinated with Escherichia coli cell division. Mol Microbiol. 2002;46: 63–74. pmid:12366831 doi: 10.1046/j.1365-2958.2002.03156.x
[26]  Broedersz CP, Wang X, Meir Y, Loparo JJ, Rudner DZ, Wingreen NS. Condensation and localization of the partitioning protein ParB on the bacterial chromosome. Proc Natl Acad Sci. 2014;111: 8809–8814. doi: 10.1073/pnas.1402529111. pmid:24927534
[27]  Cerin H, Hackett J. The parVP region of the Salmonella typhimurium virulence plasmid pSLT contains four loci required for incompatibility and partition. Plasmid. 1993;30: 30–38. pmid:8378444 doi: 10.1006/plas.1993.1031
[28]  Zinder ND. Lysogenization and superinfection immunity in Salmonella. Virology. 1958;5: 291–326. pmid:13544107 doi: 10.1016/0042-6822(58)90025-4
[29]  Botstein D. Synthesis and maturation of phage P22 DNA: I. Identification of intermediates. J Mol Biol. 1968;34: 621–641. pmid:4938561 doi: 10.1016/0022-2836(68)90185-x
[30]  Botstein D, Levine M. Synthesis and maturation of phage P22 DNA: II. Properties of temperature-sensitive phage mutants defective in DNA metabolism. J Mol Biol. 1968;34: 643–654. pmid:4938562 doi: 10.1016/0022-2836(68)90186-1
[31]  Levine M, Chakravorty M, Bronson MJ. Control of the replication complex of bacteriophage P22. J Virol. 1970;6: 400–405. pmid:5497885
[32]  Fukazawa Y, Hartman PE. A P22 bacteriophage mutant defective in antigen conversion. Virology. 1964;23: 279–283. pmid:14187920 doi: 10.1016/0042-6822(64)90296-x
[33]  Broadbent SE, Davies MR, van der Woude MW. Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism. Mol Microbiol. 2010;77: 337–353. doi: 10.1111/j.1365-2958.2010.07203.x. pmid:20487280
[34]  Susskind MM, Botstein D, Wright A. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. III. Failure of superinfecting phage DNA to enter sieA+ lysogens. Virology. 1974;62: 350–366. pmid:4610992 doi: 10.1016/0042-6822(74)90398-5
[35]  Schrag SJ, Mittler JE. Host-parasite coexistence: the role of spatial refuges in stabilizing bacteria-phage interactions. Am Nat. 1996;148: 348–377. doi: 10.1086/285929
[36]  Heilmann S, Sneppen K, Krishna S. Coexistence of phage and bacteria on the boundary of self-organized refuges. Proc Natl Acad Sci. 2012;109: 12828–12833. doi: 10.1073/pnas.1200771109. pmid:22807479
[37]  Bull JJ, Vegge CS, Schmerer M, Chaudhry WN, Levin BR. Phenotypic resistance and the dynamics of bacterial escape from phage control. PloS one. 2014;9: e94690–10. doi: 10.1371/journal.pone.0094690. pmid:24743264
[38]  Li K, Barksdale L, Garmise L. Phenotypic alterations associated with the bacteriophage carrier state of Shigella dysenteriae. J Gen Microbiol. 1961;24: 355–367. pmid:13761818 doi: 10.1099/00221287-24-3-355
[39]  Merriam V. Stability of the carrier state in bacteriophage M13-infected cells. J Virol. 1977;21: 880–888. pmid:321804
[40]  Bastías R, Higuera G, Sierralta W, Espejo RT. A new group of cosmopolitan bacteriophages induce a carrier state in the pandemic strain of Vibrio parahaemolyticus. Environ Microbiol. 2010;12: 990–1000. doi: 10.1111/j.1462-2920.2010.02143.x. pmid:20105216
[41]  Sorek R, Kunin V, Hugenholtz P. CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol. 2008;6: 181–186. pmid:18157154 doi: 10.1038/nrmicro1793
[42]  Sambrook J, Russel DW. Molecular Cloning (A Laboratory manual). Massey RC, editor. New York: Cold Spring Harbor Laboratory press; 2001.
[43]  Clark DJ, Maal?e O. DNA replication and the division cycle in Escherichia coli. J Mol Biol. 1967;23: 99–112. doi: 10.1016/s0022-2836(67)80070-6
[44]  Davis R, Botstein D, Roth J. Advanced bacterial genetics. New York: Cold Spring Harbor Laboratory Press; 1980.
[45]  Yamamoto KR, Alberts BM, Benzinger R, Lawhorne L, Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970;40: 734–744. pmid:4908735 doi: 10.1016/0042-6822(70)90218-7
[46]  Mcclelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413: 852–856. pmid:11677609
[47]  Torreblanca J, Marqués S, Casadesús J. Synthesis of FinP RNA by plasmids F and pSLT is regulated by DNA adenine methylation. Genetics. 1999;151: 31–45.
[48]  Li X-T, Thomason LC, Sawitzke JA, Costantino N, Court DL. Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Res. 2013;41: e204–e204. doi: 10.1093/nar/gkt1075. pmid:24203710
[49]  Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci. 2000;97: 6640–6645. pmid:10829079 doi: 10.1073/pnas.120163297
[50]  Datta S, Costantino N, Court DL. A set of recombineering plasmids for gram-negative bacteria. Gene. 2006;379: 109–115. pmid:16750601 doi: 10.1016/j.gene.2006.04.018
[51]  Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene. 1995;158: 9–14. pmid:7789817 doi: 10.1016/0378-1119(95)00193-a
[52]  Espeli O, Mercier R, Boccard F. DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol Microbiol. 2008;68: 1418–1427. doi: 10.1111/j.1365-2958.2008.06239.x. pmid:18410497
[53]  Makumi A, Cenens W, Lavigne R, Aertsen A. P22 mediated recombination of frt-sites. Virology. 2014;462–463: 340–342. doi: 10.1016/j.virol.2014.06.015. pmid:25019493
[54]  Sawitzke JA, Costantino N, Li X-T, Thomason LC, Bubunenko M, Court C, et al. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol. 2011;407: 45–59. doi: 10.1016/j.jmb.2011.01.030. pmid:21256136
[55]  Mattis AN, Gumport RI, Gardner JF. Purification and characterization of bacteriophage P22 Xis protein. J Bacteriol. 2008;190: 5781–5796. doi: 10.1128/JB.00170-08. pmid:18502866
[56]  Youderian P, Sugiono P, Brewer KL, Higgins NP, Elliott T. Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics. 1988;118: 581–592. pmid:2835289
[57]  Ebel-Tsipis J, Botstein D, Fox MS. Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. J Mol Biol. 1972;71: 433–448. pmid:4564486 doi: 10.1016/0022-2836(72)90361-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133