A total of 93,682 BAC-end sequences (BESs) were generated from a dwarf model tomato, cv. Micro-Tom. After removing repetitive sequences, the BESs were similarity searched against the reference tomato genome of a standard cultivar, “Heinz 1706.” By referring to the “Heinz 1706” physical map and by eliminating redundant or nonsignificant hits, 28,804 “unique pair ends” and 8,263 “unique ends” were selected to construct hypothetical BAC contigs. The total physical length of the BAC contigs was 495, 833, 423?bp, covering 65.3% of the entire genome. The average coverage of euchromatin and heterochromatin was 58.9% and 67.3%, respectively. From this analysis, two possible genome rearrangements were identified: one in chromosome 2 (inversion) and the other in chromosome 3 (inversion and translocation). Polymorphisms (SNPs and Indels) between the two cultivars were identified from the BLAST alignments. As a result, 171,792 polymorphisms were mapped on 12 chromosomes. Among these, 30,930 polymorphisms were found in euchromatin (1 per 3,565?bp) and 140,862 were found in heterochromatin (1 per 2,737?bp). The average polymorphism density in the genome was 1 polymorphism per 2,886?bp. To facilitate the use of these data in Micro-Tom research, the BAC contig and polymorphism information are available in the TOMATOMICS database. 1. Introduction Tomato (Solanum lycopersicum) is one of the most important vegetable crops cultivated worldwide. Tomato has a diploid (2n = 2x = 24) and relatively compact genome of approximately 950?Mb [1]. Recently, its genome has been completely sequenced by the international genome sequencing consortium [2]. Genetic linkage maps of tomato have been created by crossing cultivated tomato (S. lycopersicum) with several wild relatives, S. pennellii, S. pimpinellifolium, S. cheesmaniae, S. neorickii, S. chmielewskii, S. habrochaites, and S. peruvianum [3]. Introgression lines generated from a cross between S. lycopersicum and S. pennellii have contributed to the isolation of important loci and quantitative trait loci (QTLs) related to fruit size by utilizing DNA markers on the Tomato-EXPEN 2000 genetic map [4–9]. Such interspecies genetic mapping is effective because the divergent genomes provide many polymorphic DNA markers. In contrast, intraspecies mapping is less popular in tomato because of the low genetic diversity within cultivated tomatoes that has resulted from the domestication process and subsequent modern breeding [10]. Recently, we developed SNP, simple sequence repeat (SSR), and intronic polymorphic markers using publicly
References
[1]
K. Arumuganathan and E. D. Earle, “Nuclear DNA content of some important plant species,” Plant Molecular Biology Reporter, vol. 9, no. 3, pp. 208–218, 1991.
[2]
Tomato Genome Consortium, “The tomato genome sequence provides insights into fleshy fruit evolution,” Nature, vol. 485, no. 7400, pp. 635–641, 2012.
[3]
M. R. Foolad, “Genome mapping and molecular breeding of tomato,” International Journal of Plant Genomics, vol. 2007, Article ID 64358, 52 pages, 2007.
[4]
I. Paran, I. Goldman, S. D. Tanksley, and D. Zamir, “Recombinant inbred lines for genetic mapping in tomato,” Theoretical and Applied Genetics, vol. 90, no. 3-4, pp. 542–548, 1995.
[5]
T. M. Fulton, J. C. Nelson, and S. D. Tanksley, “Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations,” Theoretical and Applied Genetics, vol. 95, no. 5-6, pp. 895–902, 1997.
[6]
A. Frary, T. C. Nesbitt, A. Frary et al., “fw2.2: a quantitative trait locus key to the evolution of tomato fruit size,” Science, vol. 289, no. 5476, pp. 85–88, 2000.
[7]
J. Liu, J. Van Eck, B. Cong, and S. D. Tanksley, “A new class of regulatory genes underlying the cause of pear-shaped tomato fruit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 13302–13306, 2002.
[8]
B. Cong, L. S. Barrero, and S. D. Tanksley, “Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication,” Nature Genetics, vol. 40, no. 6, pp. 800–804, 2008.
[9]
H. Xiao, N. Jiang, E. Schaffner, E. J. Stockinger, and E. Van Der Knaap, “A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit,” Science, vol. 319, no. 5869, pp. 1527–1530, 2008.
[10]
C. M. Rick, E. Kesicki, J. F. Fobes, and M. Holle, “Genetic and biosystematic studies on two new sibling species of Lycopersicon from interandean Peru,” Theoretical and Applied Genetics, vol. 47, no. 2, pp. 55–68, 1976.
[11]
K. Shirasawa, E. Asamizu, H. Fukuoka et al., “An interspecific linkage map of SSR and intronic polymorphism markers in tomato,” Theoretical and Applied Genetics, vol. 121, no. 4, pp. 731–739, 2010.
[12]
K. Shirasawa, S. Isobe, H. Hirakawa et al., “SNP discovery and linkage map construction in cultivated tomato,” DNA Research, vol. 17, no. 6, pp. 381–391, 2010.
[13]
R. Meissner, Y. Jacobson, S. Melamed et al., “A new model system for tomato genetics,” Plant Journal, vol. 12, no. 6, pp. 1465–1472, 1997.
[14]
E. Emmanuel and A. A. Levy, “Tomato mutants as tools for functional genomics,” Current Opinion in Plant Biology, vol. 5, no. 2, pp. 112–117, 2002.
[15]
H. J. Sun, S. Uchii, S. Watanabe, and H. Ezura, “A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics,” Plant and Cell Physiology, vol. 47, no. 3, pp. 426–431, 2006.
[16]
G. J. Bishop, K. Harrison, and J. D. G. Jones, “The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family,” Plant Cell, vol. 8, no. 6, pp. 959–969, 1996.
[17]
E. Martí, C. Gisbert, G. J. Bishop, M. S. Dixon, and J. L. García-Martínez, “Genetic and physiological characterization of tomato cv. Micro-Tom,” Journal of Experimental Botany, vol. 57, no. 9, pp. 2037–2047, 2006.
[18]
S. Watanabe, T. Mizoguchi, K. Aoki et al., “Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens,” Plant Biotechnology, vol. 24, no. 1, pp. 33–38, 2007.
[19]
C. Matsukura, I. Yamaguchi, M. Inamura et al., “Generation of gamma irradiation-induced mutant lines of the miniature tomato (Solanum lycopersicum L.) cultivar ‘Micro-Tom’,” Plant Biotechnology, vol. 24, no. 1, pp. 39–44, 2007.
[20]
T. Saito, T. Ariizumi, Y. Okabe et al., “TOMATOMA: a novel tomato mutant database distributing micro-tom mutant collections,” Plant and Cell Physiology, vol. 52, no. 2, pp. 283–296, 2011.
[21]
L. A. Mueller, S. D. Tanskley, J. J. Giovannoni et al., “The tomato sequencing project, the first cornerstone of the International Solanaceae Project (SOL),” Comparative and Functional Genomics, vol. 6, no. 3, pp. 153–158, 2005.
[22]
S. Katagiri, J. Wu, Y. Ito et al., “End sequencing and chromosomal in silico mapping of BAC clones derived from an indica rice cultivar, Kasalath,” Breeding Science, vol. 54, no. 3, pp. 273–279, 2004.
[23]
T. R. Silva Figueira, V. Okura, F. R. da Silva, et al., “A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome,” BMC Research Notes, vol. 5, p. 185, 2012.
[24]
S. K. Sehgal, W. Li, P. D. Rabinowicz, et al., “Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat,” BMC Plant Biology, vol. 12, p. 64, 2012.
[25]
M. K. Sharma, R. Sharma, P. Cao, et al., “A genome-wide survey of switchgrass genome structure and organization,” PLoS One, vol. 7, no. 4, Article ID e33892, 2012.
[26]
H. Wang, R. V. Penmetsa, M. Yuan, et al., “Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.),” BMC Plant Biology, vol. 12, p. 10, 2012.
[27]
B. Ewing, L. Hillier, M. C. Wendl, and P. Green, “Base-calling of automated sequencer traces using phred. I. Accuracy assessment,” Genome Research, vol. 8, no. 3, pp. 175–185, 1998.
[28]
B. Ewing and P. Green, “Base-calling of automated sequencer traces using phred. II. Error probabilities,” Genome Research, vol. 8, no. 3, pp. 186–194, 1998.
[29]
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[30]
S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[31]
X. B. Zhong, P. F. Fransz, J. W. V. Eden et al., “FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato,” Plant Journal, vol. 13, no. 4, pp. 507–517, 1998.
[32]
Y. Wang, X. Tang, Z. Cheng, L. Mueller, J. Giovannoni, and S. D. Tanksley, “Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome,” Genetics, vol. 172, no. 4, pp. 2529–2540, 2006.
[33]
J. W. Scott and B. K. Harbaugh, MICRO-TOM: A Miniature Dwarf Tomato (Circular), Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida, 1989.
[34]
J. Yu, S. Hu, J. Wang, et al., “A draft sequence of the rice genome (Oryza sativa L. ssp. indica),” Science, vol. 296, no. 5565, pp. 79–92, 2002.
[35]
H. Xiao, N. Jiang, E. Schaffner, E. J. Stockinger, and E. Van Der Knaap, “A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit,” Science, vol. 319, no. 5869, pp. 1527–1530, 2008.
[36]
K. Aoki, K. Yano, A. Suzuki et al., “Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics,” BMC Genomics, vol. 11, no. 1, article no. 210, 2010.