Abbott D H and Isley A E. 2002. The intensity, occurrence, and duration of superplume events and eras over geological time[J]. Journal of Geodynamics, 34(2): 265-307.
[6]
André L, Cardinal D, Alleman L Y and Moorbath S. 2006. Silicon isotopes in ~3.8Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle[J]. Earth and Planetary Science Letters, 245(2): 162-173.
[7]
Barley M E, Kerrich R, Krape B and Groves D I. 1998. The Late Archean bonanza:Metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity[J]. Precambrian Research, 91(1-2): 65-90.
[8]
Barley M E, Bekker A and Krape B. 2005. Late Archean to early Paleoproterozoicglobal tectonics, environmental change and the rise of atmospheric oxygen[J]. Earth and Planetary Science Letters, 238(1-2): 156-171.
[9]
Barrett T J, Fralick P W and Jarvis I. 1988. Rare-earth-element geochemistry of some Archean iron formations north of Lake Superior, Ontario[J]. Canadian Journal of Earth Sciences, 25(4): 570-580.
[10]
Bekker A, Slack J F, Planavsky N, Krape B, Hofmann A, Konhauser K O and Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Econ. Geol., 105(3): 467-508.
[11]
Beukes N J. 1983. Palaeoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa[A]. In: Trendall A F and Morris R C, eds. Iron-formation: Facts and problems[C]. Amsterdam: Elsevier Press. 131-209.
[12]
Beukes N J. 1984. Sedimentology of the Kueuman and Griquatown iron-formation, Transvaal Supergroup, Griqualand West, South Africa[J]. Precambrian Research, 24(1): 47-84.
[13]
Beukes N J. 1986. The Transvaal sequence in Griqualand West[A]. In: Anhaeusser C R and Maskes S, eds. Mineral deposits of Southern Africa[C]. Johannesburg: Geological Society of South Africa, 1(3): 819-828.
[14]
Beukes N J and Klein C. 1992. Models for iron formation deposition[A]. In: Schoph J W and Klein C, eds. The Proterozoic biosphere: A multidisciplinary study[C]. Cambridge: Cambridge University Press. 146-151.
[15]
Blake R S and Barley M E. 1992. Tectonic evolution of the late Archean to early Proterozoic Mount Bruce megasequence set, Western Australia[J]. Tectonics, 11(6): 1415-1425.
[16]
Bolhar R, Van Kranendonk M J and Kamber B S. 2005. A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton: Formation from hydrothermal fluids and shallow seawater[J]. Precambrian Research, 137(1-2): 93-114.
[17]
Boyle R W and Davies J L. 1973. Banded iron formations[J]. Geochim. Cosmochim. Acta, 37(3): 1389-1398.
[18]
Braterman P S, Cairns Smith A G, Sloper R W, Truscott T G and Craw M. 1984. Photo-oxidation of iron(II) in water between pH 7.5 and 4.0[J]. Journal of the Chemical Society, Dalton Transaction, 3(7): 1441-1445.
[19]
Brocks J J, Logan G A, Buick R and Summons R E. 1999. Archean molecular fossils and the early rise of eukaryotes[J]. Science, 285: 1033-1036.
[20]
Cameron E M. 1983. Genesis of Proterozoic iron-formation: Sulphur isotope evidence[J]. Geochim. Cosmochim. Acta, 47(6): 1069-1074.
[21]
更多...
[22]
Canfield D E. 1998. A new model for Proterozoic ocean chemistry[J]. Nature, 396(3): 450-453.
[23]
Catuneanu O and Eriksson P G. 1999. The sequence stratigraphic concept and the Precambrian rock record: An example from the 2.7-2.1 Ga Transvaal Supergroup, Kaapvaal craton[J]. Precambrian Research, 97(3-4): 215-251.
[24]
Cloud P. 1968. Atmospheric and hydrospheric evolution on the primitive earth: Both secular accretion and biological and geochemical processes have affected earth\'s volatile envelope[J]. Science, 160(17): 729-736.
[25]
Cloud P. 1973. Paleoecological significance of the banded iron-formation[J]. Econ. Geol., 68(7): 1135-1143.
[26]
Erikson K A. 1983. Siliciclastic-hosted iron-formation in the early Archean Barberton and Pilbara sequence[J]. Journal of the Geological Society of Australia, 30(3-4): 473-482.
[27]
Farquhar J, Peters M, Johnston D T, Strauss H, Masterson A, Wiechert U and Kaufman A J. 2007. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry[J]. Nature, 449(11): 706-709.
[28]
Franco P and Leon B. 2008. A review of Australia Proterozoic mineral systems and genetic models[J]. Precambrian Research, 166(1-4): 54-80.
[29]
Francois L M. 1986. Extensive deposition of banded iron formations was possible without photosynthesis[J]. Nature, 320(27): 352-354.
[30]
Franklin J M, Gibson H L, Jonasson I R and Galley A G. 2005. Volcanogenic massive sulfide deposits[M]. Economic Geology 100th Anniversary Volume. 523-560.
[31]
Fripp R E P. 1976. Stratabound gold deposits in Archaean banded iron-formation, Rhodesia[J]. Econ. Geol., 71(1): 58-75.
[32]
Cloud P and Morrisson K. 1979. On microbial contaminants, micropseudofossils, and the oldest records of life[J]? Precambrian Research, 9(1): 81-91.
[33]
Clout J M F and Simonson B M. 2005. Precambrian iron formations and iron formation-hosted iron ore deposits[A]. In: Hedenquist J W, Thompson J F H, Goldfarb R J and Richards J P, eds. Economic Geology One Hundredth Anniversary Volume,1905-2005[C]. Littleton: Economic Geology. 643-679.
[34]
Dauphas N, Van Zuilen M, Wadhwa M, Davis M, Marty A M, Janney B and Philip E. 2004. Clues from Fe isotope variations on the origin of Early Archean BIFs from Greenland[J]. Science, 306: 2077-2080.
[35]
Dimroth E and Chauvel J J. 1974. Petrography of the Sokoman iron formation in part of the central Labrador Trough[J]. Geological Society of America Bulletin, 84(1): 111-134.
[36]
Garrels R M. 1987. A model for the deposition of the microbanded Precambrian iron formations[J]. American Journal of Science, 287(2): 81-106.
[37]
Glikson A and Vickers J. 2007. Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley basin, Pilbara craton, Western Australia[J]. Earth and Planetary Science Letters, 254(1-2): 214-226.
[38]
Goldich S S. 1973. Ages of Precambrian banded iron-formations[J]. Econ. Geol., 68(7): 1126-1134.
[39]
Gole M and Klein C. 1981. Banded iron-formations through much of Precambrian time[J]. Journal of Geology, 89(2): 169-183.
[40]
Goode A D T, Hall W D M and Bunting J A. 1983. The Nabberu basin of Western Australia[A]. In: Trendall A F and Morris R C, eds. Iron-formation: Facts and problems[C]. Amsterdam: Elsevier Press. 295-323.
[41]
Goodwin A M. 1973. Archean iron-formations and tectonic basins of the Canadian Shield[J]. Econ. Geol., 68(7): 915-933.
[42]
Grassineau N V, Nisbet E G, Fowler C M R, Bickle M J, Lowry D, Chapman H J, Mattey D P, Abell P, Yong J and Martin A. 2002. Stable isotopes in the Archaean Belingwe belt, Zimbabwe: Evidence for a diverse microbial mat ecology[J]. Geological Society Special Publication, 199(1): 309-328.
[43]
Gross G A. 1965. Geology of iron deposits in Canada, Vol. 1. General geology and evaluation of iron deposits[M]. Geological Survey of Canada, Economic Report. 22p.
[44]
Gross G A. 1972. Primary features in cherty iron formations[J]. Sedimentary Geology, 7(4): 241-261.
[45]
Gross G A. 1980. A classification of iron formations based on depositional environments[J]. Canadian Mineralogist, 18(2): 215-222.
[46]
Gross G A. 1983. Tectonic systems and the deposition of iron-formation[J]. Precambrian Research, 20(2-4): 171-187.
[47]
Gross G A. 1996. Algoma-type previous termiron-formation.next term[A]. In: Lefebure D and Hoy T, eds. Selected British Columbia mineral deposits Profiles 2[C]. Ottawa: British Columbia Ministry of Employment and Investment Open File. 25-28.
[48]
Groves D I, Phillips N, Ho S E, Houstoun S M and Standing C A. 1987. Craton-scale distribution of Archaean greenstone gold deposits: Predictive capacity of the metamorphic model[J]. Econ. Geol., 82(8): 2045-2058.
[49]
Han T M and Runnegar B. 1992. Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee iron-formation, Michigan[J]. Science, 257: 232-235.
[50]
Hassler S W. 1993. Depositional history of the Main tuff interval of the Wittenoom Formation, Late Archean-Early Proterozoic Hamersley Group, Western Australia[J]. Precambrian Research, 60(1-4): 337-359.
[51]
Heising S, Richter L, Ludwig W and Schink B. 1999. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain[J]. Archives of Microbiology, 172(2): 116-124.
[52]
Hoffman P. 1987. Early Proterozoic foreddeps, foredeep magmatism, and Superior-type iron-formation of the Canadian Shield[A]. In: Krner A, ed. Proterozoic lithospheric evolution[C]. Washinton D C: Am. Geophys Union, Geodyn Ser. 85-98.
[53]
Holland H D. 1973. The oceans: A possible source of iron in iron-formations[J]. Econ. Geol., 68(7): 1169-1172.
[54]
Holland H D. 1984. The chemical evolution of the atmosphere and oceans[M]. New York: Princeton University Press. 582p.
[55]
Hren M T, Tice M M and Chamberlain C P. 2009. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago[J]. Nature, 462(12): 205-208.
[56]
Huston D L and Logan G A. 2004. Barite, BIFs and bugs: Evidence for the evolution of the Earth\'s early hydrosphere[J]. Earth and Planetary Science Letters, 220(1-2): 41-55.
[57]
Huston D L, Pehrsson S, Eglington B M and Zaw K. 2010. The geology and metallogeny of volcanic-hosted massive sulfide deposits: Variations through geologic time and with tectonic setting[J]. Econ. Geol., 105(3): 571-591.
[58]
Isley A E. 1995. Hydrothermal plumes and the delivery of iron to banded iron formation[J]. The Journal of Geology, 103(2): 169-185.
[59]
Isley A E and Abbott D H. 1999. Plume-related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research, 104(B7): 15461-15477.