全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

国外前寒武纪铁建造的研究进展与有待深入探讨的问题

Keywords: 地质学,铁建造,BIF分类,国外前寒武纪,克拉通,研究进展,综述

Full-Text   Cite this paper   Add to My Lib

Abstract:

形成于早前寒武纪的铁建造,是一种富铁〔w(TFe)>15%〕的硅质化学沉积岩,其主要矿物组成是铁氧化物(磁铁矿和赤铁矿)及石英。根据铁建造的岩相学特征,将其划分为条带状铁建造和粒状铁建造;根据铁建造的沉积环境,将条带状铁建造划分为与火山岩有关的Algoma型和与细碎屑-碳酸盐岩有关的Superior型2种类型。铁建造的出现,起始于38亿年前,主要集中于28~18亿年,在18亿年之后有一个连续的缺失,但在8亿年左右因雪球事件而重新少量出现。Algoma型铁建造主要发育于中-新太古代,而Superior型则集中出现于古元古代;前者多形成于前寒武纪克拉通化之前,与海相火山活动和陆壳巨量增生密切相关,而后者多形成于克拉通化之后,与稳定发育的克拉通盆地和大气氧含量增加有关。Algoma型铁矿具有单个矿体规模较小、品位较低和多层发育等特征,而Superior型铁矿则具有单个矿体规模较大、品位较高、层位稳定等特征。由于铁建造在地质历史上大规模发育且不重复出现,所以,开展铁建造的研究不仅具有经济价值,而且具有重要的科学意义。铁建造的研究趋势是,在世界范围内进一步深化地球早期构造(地幔柱与早期板块构造)演化、水圈及大气圈组成与演化、地球早期生物活动,以及铁建造成因和时空分布规律等方面的研究。

References

[1]  李碧乐, 霍 亮, 李永胜. 2007. 条带状铁建造(BIFs)研究的几个问题[J]. 矿物学报, 27(2): 205-210.
[2]  李延河, 侯可军, 万德芳, 张增杰, 乐国良. 2010. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋[J]. 地质学报, 84(9): 1359-1373.
[3]  沈保丰, 翟安民, 杨春亮, 曹秀兰. 2005. 中国前寒武纪铁矿床时空分布和演化特征[J]. 地质调查与研究, 28(4): 196-206.
[4]  姚凤良, 孙丰月. 2006. 矿床学教程[M]. 北京: 地质出版社. 254页.
[5]  Abbott D H and Isley A E. 2002. The intensity, occurrence, and duration of superplume events and eras over geological time[J]. Journal of Geodynamics, 34(2): 265-307.
[6]  André L, Cardinal D, Alleman L Y and Moorbath S. 2006. Silicon isotopes in ~3.8Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle[J]. Earth and Planetary Science Letters, 245(2): 162-173.
[7]  Barley M E, Kerrich R, Krape B and Groves D I. 1998. The Late Archean bonanza:Metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity[J]. Precambrian Research, 91(1-2): 65-90.
[8]  Barley M E, Bekker A and Krape B. 2005. Late Archean to early Paleoproterozoicglobal tectonics, environmental change and the rise of atmospheric oxygen[J]. Earth and Planetary Science Letters, 238(1-2): 156-171.
[9]  Barrett T J, Fralick P W and Jarvis I. 1988. Rare-earth-element geochemistry of some Archean iron formations north of Lake Superior, Ontario[J]. Canadian Journal of Earth Sciences, 25(4): 570-580.
[10]  Bekker A, Slack J F, Planavsky N, Krape B, Hofmann A, Konhauser K O and Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Econ. Geol., 105(3): 467-508.
[11]  Beukes N J. 1983. Palaeoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa[A]. In: Trendall A F and Morris R C, eds. Iron-formation: Facts and problems[C]. Amsterdam: Elsevier Press. 131-209.
[12]  Beukes N J. 1984. Sedimentology of the Kueuman and Griquatown iron-formation, Transvaal Supergroup, Griqualand West, South Africa[J]. Precambrian Research, 24(1): 47-84.
[13]  Beukes N J. 1986. The Transvaal sequence in Griqualand West[A]. In: Anhaeusser C R and Maskes S, eds. Mineral deposits of Southern Africa[C]. Johannesburg: Geological Society of South Africa, 1(3): 819-828.
[14]  Beukes N J and Klein C. 1992. Models for iron formation deposition[A]. In: Schoph J W and Klein C, eds. The Proterozoic biosphere: A multidisciplinary study[C]. Cambridge: Cambridge University Press. 146-151.
[15]  Blake R S and Barley M E. 1992. Tectonic evolution of the late Archean to early Proterozoic Mount Bruce megasequence set, Western Australia[J]. Tectonics, 11(6): 1415-1425.
[16]  Bolhar R, Van Kranendonk M J and Kamber B S. 2005. A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton: Formation from hydrothermal fluids and shallow seawater[J]. Precambrian Research, 137(1-2): 93-114.
[17]  Boyle R W and Davies J L. 1973. Banded iron formations[J]. Geochim. Cosmochim. Acta, 37(3): 1389-1398.
[18]  Braterman P S, Cairns Smith A G, Sloper R W, Truscott T G and Craw M. 1984. Photo-oxidation of iron(II) in water between pH 7.5 and 4.0[J]. Journal of the Chemical Society, Dalton Transaction, 3(7): 1441-1445.
[19]  Brocks J J, Logan G A, Buick R and Summons R E. 1999. Archean molecular fossils and the early rise of eukaryotes[J]. Science, 285: 1033-1036.
[20]  Cameron E M. 1983. Genesis of Proterozoic iron-formation: Sulphur isotope evidence[J]. Geochim. Cosmochim. Acta, 47(6): 1069-1074.
[21]  更多...
[22]  Canfield D E. 1998. A new model for Proterozoic ocean chemistry[J]. Nature, 396(3): 450-453.
[23]  Catuneanu O and Eriksson P G. 1999. The sequence stratigraphic concept and the Precambrian rock record: An example from the 2.7-2.1 Ga Transvaal Supergroup, Kaapvaal craton[J]. Precambrian Research, 97(3-4): 215-251.
[24]  Cloud P. 1968. Atmospheric and hydrospheric evolution on the primitive earth: Both secular accretion and biological and geochemical processes have affected earth\'s volatile envelope[J]. Science, 160(17): 729-736.
[25]  Cloud P. 1973. Paleoecological significance of the banded iron-formation[J]. Econ. Geol., 68(7): 1135-1143.
[26]  Erikson K A. 1983. Siliciclastic-hosted iron-formation in the early Archean Barberton and Pilbara sequence[J]. Journal of the Geological Society of Australia, 30(3-4): 473-482.
[27]  Farquhar J, Peters M, Johnston D T, Strauss H, Masterson A, Wiechert U and Kaufman A J. 2007. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry[J]. Nature, 449(11): 706-709.
[28]  Franco P and Leon B. 2008. A review of Australia Proterozoic mineral systems and genetic models[J]. Precambrian Research, 166(1-4): 54-80.
[29]  Francois L M. 1986. Extensive deposition of banded iron formations was possible without photosynthesis[J]. Nature, 320(27): 352-354.
[30]  Franklin J M, Gibson H L, Jonasson I R and Galley A G. 2005. Volcanogenic massive sulfide deposits[M]. Economic Geology 100th Anniversary Volume. 523-560.
[31]  Fripp R E P. 1976. Stratabound gold deposits in Archaean banded iron-formation, Rhodesia[J]. Econ. Geol., 71(1): 58-75.
[32]  Cloud P and Morrisson K. 1979. On microbial contaminants, micropseudofossils, and the oldest records of life[J]? Precambrian Research, 9(1): 81-91.
[33]  Clout J M F and Simonson B M. 2005. Precambrian iron formations and iron formation-hosted iron ore deposits[A]. In: Hedenquist J W, Thompson J F H, Goldfarb R J and Richards J P, eds. Economic Geology One Hundredth Anniversary Volume,1905-2005[C]. Littleton: Economic Geology. 643-679.
[34]  Dauphas N, Van Zuilen M, Wadhwa M, Davis M, Marty A M, Janney B and Philip E. 2004. Clues from Fe isotope variations on the origin of Early Archean BIFs from Greenland[J]. Science, 306: 2077-2080.
[35]  Dimroth E and Chauvel J J. 1974. Petrography of the Sokoman iron formation in part of the central Labrador Trough[J]. Geological Society of America Bulletin, 84(1): 111-134.
[36]  Garrels R M. 1987. A model for the deposition of the microbanded Precambrian iron formations[J]. American Journal of Science, 287(2): 81-106.
[37]  Glikson A and Vickers J. 2007. Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley basin, Pilbara craton, Western Australia[J]. Earth and Planetary Science Letters, 254(1-2): 214-226.
[38]  Goldich S S. 1973. Ages of Precambrian banded iron-formations[J]. Econ. Geol., 68(7): 1126-1134.
[39]  Gole M and Klein C. 1981. Banded iron-formations through much of Precambrian time[J]. Journal of Geology, 89(2): 169-183.
[40]  Goode A D T, Hall W D M and Bunting J A. 1983. The Nabberu basin of Western Australia[A]. In: Trendall A F and Morris R C, eds. Iron-formation: Facts and problems[C]. Amsterdam: Elsevier Press. 295-323.
[41]  Goodwin A M. 1973. Archean iron-formations and tectonic basins of the Canadian Shield[J]. Econ. Geol., 68(7): 915-933.
[42]  Grassineau N V, Nisbet E G, Fowler C M R, Bickle M J, Lowry D, Chapman H J, Mattey D P, Abell P, Yong J and Martin A. 2002. Stable isotopes in the Archaean Belingwe belt, Zimbabwe: Evidence for a diverse microbial mat ecology[J]. Geological Society Special Publication, 199(1): 309-328.
[43]  Gross G A. 1965. Geology of iron deposits in Canada, Vol. 1. General geology and evaluation of iron deposits[M]. Geological Survey of Canada, Economic Report. 22p.
[44]  Gross G A. 1972. Primary features in cherty iron formations[J]. Sedimentary Geology, 7(4): 241-261.
[45]  Gross G A. 1980. A classification of iron formations based on depositional environments[J]. Canadian Mineralogist, 18(2): 215-222.
[46]  Gross G A. 1983. Tectonic systems and the deposition of iron-formation[J]. Precambrian Research, 20(2-4): 171-187.
[47]  Gross G A. 1996. Algoma-type previous termiron-formation.next term[A]. In: Lefebure D and Hoy T, eds. Selected British Columbia mineral deposits Profiles 2[C]. Ottawa: British Columbia Ministry of Employment and Investment Open File. 25-28.
[48]  Groves D I, Phillips N, Ho S E, Houstoun S M and Standing C A. 1987. Craton-scale distribution of Archaean greenstone gold deposits: Predictive capacity of the metamorphic model[J]. Econ. Geol., 82(8): 2045-2058.
[49]  Han T M and Runnegar B. 1992. Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee iron-formation, Michigan[J]. Science, 257: 232-235.
[50]  Hassler S W. 1993. Depositional history of the Main tuff interval of the Wittenoom Formation, Late Archean-Early Proterozoic Hamersley Group, Western Australia[J]. Precambrian Research, 60(1-4): 337-359.
[51]  Heising S, Richter L, Ludwig W and Schink B. 1999. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain[J]. Archives of Microbiology, 172(2): 116-124.
[52]  Hoffman P. 1987. Early Proterozoic foreddeps, foredeep magmatism, and Superior-type iron-formation of the Canadian Shield[A]. In: Krner A, ed. Proterozoic lithospheric evolution[C]. Washinton D C: Am. Geophys Union, Geodyn Ser. 85-98.
[53]  Holland H D. 1973. The oceans: A possible source of iron in iron-formations[J]. Econ. Geol., 68(7): 1169-1172.
[54]  Holland H D. 1984. The chemical evolution of the atmosphere and oceans[M]. New York: Princeton University Press. 582p.
[55]  Hren M T, Tice M M and Chamberlain C P. 2009. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago[J]. Nature, 462(12): 205-208.
[56]  Huston D L and Logan G A. 2004. Barite, BIFs and bugs: Evidence for the evolution of the Earth\'s early hydrosphere[J]. Earth and Planetary Science Letters, 220(1-2): 41-55.
[57]  Huston D L, Pehrsson S, Eglington B M and Zaw K. 2010. The geology and metallogeny of volcanic-hosted massive sulfide deposits: Variations through geologic time and with tectonic setting[J]. Econ. Geol., 105(3): 571-591.
[58]  Isley A E. 1995. Hydrothermal plumes and the delivery of iron to banded iron formation[J]. The Journal of Geology, 103(2): 169-185.
[59]  Isley A E and Abbott D H. 1999. Plume-related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research, 104(B7): 15461-15477.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133