全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Advances towards a Marker-Assisted Selection Breeding Program in Prairie Cordgrass, a Biomass Crop

DOI: 10.1155/2012/313545

Full-Text   Cite this paper   Add to My Lib

Abstract:

Prairie cordgrass (Spartina pectinata Bosc ex Link) is an indigenous, perennial grass of North America that is being developed into a cellulosic biomass crop suitable for biofuel production. Limited research has been performed into the breeding of prairie cordgrass; this research details an initial investigation into the development of a breeding program for this species. Genomic libraries enriched for four simple sequence repeat (SSR) motifs were developed, 25 clones from each library were sequenced, identifying 70?SSR regions, and primers were developed for these regions, 35 of which were amplified under standard PCR conditions. These SSR markers were used to validate the crossing methodology of prairie cordgrass and it was found that crosses between two plants occurred without the need for emasculation. The successful cross between two clones of prairie cordgrass indicates that this species is not self-incompatible. The results from this research will be used to instigate the production of a molecular map of prairie cordgrass which can be used to incorporate marker-assisted selection (MAS) protocols into a breeding program to improve this species for cellulosic biomass production. 1. Introduction Recent world issues associated with fuel consumption and supply have turned attention towards biofuel production, especially cellulosic biofuel. Perennial grasses provide an optimal source of cellulosic biomass due to their high yield potential. Prairie cordgrass (Spartina pectinata Bosc ex Link) is a perennial indigenous grass of North America and can be found as a native from Texas to near the Arctic Circle [1]. Ongoing studies on prairie cordgrass in comparison with switchgrass (Panicum virgatum L.) indicate that prairie cordgrass could produce more biomass than switchgrass [2]. Furthermore, results from the comparison of prairie cordgrass and switchgrass performed by Boe and Lee in 2007 [2] indicated that prairie cordgrass has a wider environmental amplitude and is adapted to poorly drained wet areas which can have high salinity and be poorly aerated, regions not suitable for the production of conventional crops such as maize (Zea mays) [2, 3]. These results are indicative of the potential of prairie cordgrass as a source of biomass for cellulosic biofuel production. A research program at South Dakota State University (SDSU) is underway to develop native prairie cordgrass into a viable cellulosic biomass crop. The development of a new crop species requires a multidisciplinary approach; examining and validating each step before commercialization can

References

[1]  USDA-NRCS, Plants Database, USDA-NRCS, Urbandale, Iowa, USA, 2008.
[2]  A. Boe and D. K. Lee, “Genetic variation for biomass production in prairie cordgrass and switchgrass,” Crop Science, vol. 47, no. 3, pp. 929–934, 2007.
[3]  J. L. Gonzalez-Hernandez, G. Sarath, J. M. Stein, V. Owens, K. Gedye, and A. Boe, “A multiple species approach to biomass production from native herbaceous perennial feedstocks,” In Vitro Cellular and Developmental Biology-Plant, vol. 45, no. 3, pp. 267–281, 2009.
[4]  X. Fang, P. K. Subudhi, B. C. Venuto, and S. A. Harrison, “Mode of pollination, pollen germination, and seed set in smooth cordgrass (Spartina alterniflora, Poaceae),” International Journal of Plant Sciences, vol. 165, no. 3, pp. 395–401, 2004.
[5]  X. Fang, P. K. Subudhi, B. C. Venuto, S. A. Harrison, and A. B. Ryan, “Influence of flowering phenology on seed production in smooth cordgrass (Spartina alterniflora Loisel.),” Aquatic Botany, vol. 80, no. 2, pp. 139–151, 2004.
[6]  V. G. Kern, N. J. Guarise, and A. C. Vegetti, “Inflorescence structure in species of Spartina Schreb. (Poaceae: Chloridoideae: Cynodonteae),” Plant Systematics and Evolution, vol. 273, no. 1-2, pp. 51–61, 2008.
[7]  W. D. Clayton, M. S. Vorontsova, K. T. Harman, and H. Williamson, GrassBase-The Online World Grass Flora, 2006.
[8]  K. Gedye, J. Gonzalez-Hernandez, Y. Ban, et al., “Investigation of the transcriptome of Prairie Cord grass, a new cellulosic biomass crop,” The Plant Genome Journal, vol. 3, no. 2, pp. 69–80, 2010.
[9]  K. M. Moncada, N. J. Ehlke, G. J. Muehlbauer, C. C. Sheaffer, D. L. Wyse, and L. R. DeHaan, “Genetic variation in three native plant species across the State of Minnesota,” Crop Science, vol. 47, no. 6, pp. 2379–2389, 2007.
[10]  L. Cardle, L. Ramsay, D. Milbourne, M. Macaulay, D. Marshall, and R. Waugh, “Computational and experimental characterization of physically clustered simple sequence repeats in plants,” Genetics, vol. 156, no. 2, pp. 847–854, 2000.
[11]  R. K. Varshney, A. Graner, and M. E. Sorrells, “Genic microsatellite markers in plants: features and applications,” Trends in Biotechnology, vol. 23, no. 1, pp. 48–55, 2005.
[12]  A. E. Van't Hof, B. J. Zwaan, I. J. Saccheri, D. Daly, A. N. M. Bot, and P. M. Brakefield, “Characterization of 28 microsatellite loci for the butterfly Bicyclus anynana,” Molecular Ecology Notes, vol. 5, no. 1, pp. 169–172, 2005.
[13]  V. Saladin, D. Bonfils, T. Binz, and H. Richner, “Isolation and characterization of 16 microsatellite loci in the Great Tit Parus major,” Molecular Ecology Notes, vol. 3, no. 4, pp. 520–522, 2003.
[14]  T. L. King, M. S. Eackles, and B. H. Letcher, “Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery analyses,” Molecular Ecology Notes, vol. 5, no. 1, pp. 130–132, 2005.
[15]  M. M. Peacock, V. S. Kirchoff, and S. J. Merideth, “Identification and characterization of nine polymorphic microsatellite loci in the North American pika, Ochotona princeps,” Molecular Ecology Notes, vol. 2, no. 3, pp. 360–362, 2002.
[16]  M. J. Blum, C. M. Sloop, D. R. Ayres, and D. R. Strong, “Characterization of microsatellite loci in Spartina species (Poaceae),” Molecular Ecology Notes, vol. 4, no. 1, pp. 39–42, 2004.
[17]  C. M. Sloop, H. G. McGray, M. J. Blum, and D. R. Strong, “Characterization of 24 additional microsatellite loci in Spartina species (Poaceae),” Conservation Genetics, vol. 6, no. 6, pp. 1049–1052, 2005.
[18]  S. Landjeva, V. Korzun, and A. B?rner, “Molecular markers: actual and potential contributions to wheat genome characterization and breeding,” Euphytica, vol. 156, no. 3, pp. 271–296, 2007.
[19]  F. Wilde, V. Korzun, E. Ebmeyer, H. H. Geiger, and T. Miedaner, “Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat,” Molecular Breeding, vol. 19, no. 4, pp. 357–370, 2007.
[20]  A. Karakousis and P. Langridge, “High-throughput plant DNA extraction method for marker analysis,” Plant Molecular Biology Reporter, vol. 21, no. 1, 2003.
[21]  S. Rozen and H. Skaletsky, “Primer3 on the WWW for general users and for biologist programmers.,” Methods in Molecular Biology, vol. 132, pp. 365–386, 2000.
[22]  E. S. Jones, M. P. Dupal, R. K?lliker, M. C. Drayton, and J. W. Forster, “Development and characterization of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.),” Theoretical and Applied Genetics, vol. 102, no. 2-3, pp. 405–415, 2001.
[23]  K. Gedye, J. Gonzalez-Hernandez, R. Schuelke , V. Owens, and A. Boe, “Development of SSR markers from genomic DNA and ESTs in prairie cordgrass, a cellulosic biomass crop,” in Proceedings of the Plant & Animal Genomes XIX Conference, Town & Country Convention Center, San Diego, Calif, USA, January 2011.
[24]  M. Nei and W. H. Li, “Mathematical model for studying genetic variation in terms of restriction endonucleases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 10, pp. 5269–5273, 1979.
[25]  P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy, W.H. Freeman and Company, San Francisco, Calif, USA, 1973.
[26]  W. L. Kovach, MVSP-A Multivariate Statistical Package For Windows, Kovach Computing Services: Pentraeth, Walesm, UK, 1998.
[27]  Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A greedy algorithm for aligning DNA sequences,” Journal of Computational Biology, vol. 7, no. 1-2, pp. 203–214, 2000.
[28]  Y.-C. Li, A. B. Korol, T. Fahima, A. Beiles, and E. Nevo, “Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review,” Molecular Ecology, vol. 11, no. 12, pp. 2453–2465, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133