全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2008 

内蒙古正蓝旗羊蹄子山-磨石山锐钛矿矿床地质与地球化学

Keywords: 地质学,地球化学,锐钛矿矿床,羊蹄子山-磨石山,正蓝旗,内蒙古

Full-Text   Cite this paper   Add to My Lib

Abstract:

锐钛矿及其同质异象金红石是钛矿资源中最具经济意义的,也是中国当前的紧缺矿种之一。前人把羊蹄子山矿床确定为铁矿床(点),通过近几年的研究和勘查,笔者认为这是一个以锐钛矿为主的沉积变质型矿床,是钛矿床的一个新的类型。矿体产于中元古代〔(1751±8)Ma〕片岩、变质石英(粉)砂岩和斜长角闪岩中,呈似层状、透镜状产出。富矿石具有细纹状构造,表现为以石英为主(含浸染状锐钛矿)和锐钛矿条纹互层。矿石矿物主要为锐钛矿,次有金红石和钛铁矿(±赤铁矿),脉石矿物以石英为主,含一定量的直闪石和黑云母(±石榴子石)。锐钛矿、金红石和钛铁矿的粒度很细,粒径为0.01~0.1mm。富矿TiO2含量为3.14%~15.46%,平均6.91%,而贫矿的TiO2含量为1.2%~2.97%,平均1.76%。矿石含较高的TFe和V。电子探针分析表明锐钛矿和金红石的Nb和Cr含量较低,说明矿物的源区来自变质基性岩。钛铁矿微量元素的特点是富锰贫镁,和岩浆型钒钛磁铁矿中钛铁矿的微量元素正好相反。围岩斜长角闪岩恢复其原岩大致相当于玄武岩、苦橄玄武岩等。岩石化学揭示其生成构造环境为岛弧或岛弧和洋脊的过渡带。硅同位素组成结果显示,不同锐钛矿矿石、石英岩和片岩等的δ30Si值为0.1‰~-0.9‰,与海底热液喷气沉积矿床的数据相似。所有上述矿床的地质和地球化学特征表明,锐钛矿矿石和斜长角闪岩都是海底基性火山活动的产物,矿石具有化学沉积特征,而后来遭到中级(偏低)区域变质作用(1158Ma)的影响,金红石主要形成于区域变质作用。该矿床在燕山晚期〔(118±3)Ma〕由于花岗岩的侵位又局部受到热液改造。

References

[1]  Cheng Y Q. 1994. An outline of regional geology of China[M]. Beijing: Geol. Pub. House. 1-485.
[2]  Cheng D Q and Cheng G. 1990. Practical REE geochemistry[M]. Beijing: Metallurgical Industry Pub. Hour. 1-268.
[3]  Cheng W and Ji S Y. 1985. An Introduction to mineralogy [M]. Beijing: Geol. Pub. House. 1-298.
[4]  Rona P A, Klinkhammer G, Nelson T A, Trefry J H and Elderfield H. 1996. Black smokers, massive sulfides and vent biota at the Mid-Atlantic Ridge[J]. Nature, 321 : 33-37.
[5]  Shen Y H. 1986. Gc, ology and mineral resources of the Shanxi Province [M]. Beijing: Geol. Pub. House. 247p.
[6]  Turner R. 1986. Brazilian titanium [J]. Engineering and Mining Journal, 187: 40-42.
[7]  Wan D F and Jiang S Y. 2002. Silicon isotope compositions of Precambrian handed iron ore deposits and its geological significance [J]. Mineral Deposits, 21 (4) : 346-348.
[8]  Wang P, Pan Z L and Weng I, B. 1982. Systematic mineralogy (vol. 1 ) [M]. Beijing: Geol. Pub. House, 1-666.
[9]  Wetchakun N and Phanichphant S. 2008. Effect of temperature on the degree of aratase rutile transformation in titanium dioxide nanoparticles synthesized by the modified sol-gel method [J]. Current Applied Physics, 8: 343-346.
[10]  Xia X H, Yan F and Zhao Y M. 2007. Genetic type and its deposit characters of rutile minerals in China [J]. Geology of Chemical Minerals, 29(3): 185-192.
[11]  Xu S K. 2001. Genetic types of rutile deposits and metallogenic bells of China [J]. Geology of Chemical Minerals, 23 (1): 11-18.
[12]  Zhao Y M. 2008c. Genetic types, distribution, and main geological characteristics of ruffle deposits [J]. Mineral Deposits, 27 (4) : 520-530.
[13]  Винчелл Л Н, Винчёел Г. 1953. Оптическая минералогия[M]. Изд. Иностранной Литератуы, Москва, стр. 1-530.
[14]  高学东 王佩华.锐钛矿和金红石的用途及市场价格[J].矿床地质,2008,27(4):539-540.
[15]  内蒙古地质局区域地质测量队.正蓝旗幅1:20万区域地质调查报告[R].,1974.
[16]  Cheng Z X. 1990. Basic characteristics of The Donghai oclogite type futile deposit in Jiangsu province[J]. Mineral Deposits, 9( 1 ) : 86-90.
[17]  Deer W A, Howie R A and Zussman J. 1962. Rock-forming minerals [A]. Vol. 5. Non-silicates[M]. Longmans. 1-371.
[18]  Ding T P, Jiang S Y, Wan D F, Li Y H, Li J C, Song H B, Liu Z J and Yao X M. 1994. Geochemistry of silicon isotopes [M]. Beijing: Geol. Pub. House. 1-102.
[19]  Doucet S and Synthese D L. 1967. Synthesis of wolframite, Cassiterite, and anatase at low temperature[J]. Bulletin de la societe Francaise de Mineralogie et de Cristallographie, 90(1) : 111-112.
[20]  Force E R. 1991. Geology of titanium-mineral deposits[A]. The geological society of America, special paper[C] 259: 1-112.
[21]  Goldsmith R and Force E R. 1978. Distribution of rutile in metamorphic rocks and implications for placer deposits[J]. Mineralium Deposita, 13 : 329-343.
[22]  Haggerty S E. 1991. Oxide mineralogy of the upper mantle[A]. In: Lindsley D H, ed. Oxide minerals: Petrological and magnetic significance[J]. Rev. Miner. , 25: 355-416.
[23]  Hebert E and Gauthier M. 2007. Unconventional rutile deposits in the Quebec Appalachians: Product of hypogene enrichment during low-grade metamorphism[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 102(2) : 319-326.
[24]  He T X, Lu L Z, Li S X and Lan Y Q. 1988. Metamorphic petrology [M]. Beijing: Geol. Pub. House. 1-236.
[25]  Hou Z Q, Han F, Xia I. Y, Zhang Q L, Qu X M, Li Z Q, Bie F L, Wang L Q, Yu J J and Tang S H. 2003. Hydrothermal systems and melallogcry on the moder and ancient sea-floor-Case study on some VMS deposits [M]. Beijing: Geol. Pub. House. 1-423.
[26]  Jiang S Y, Ding T P, Wan D F and Li Y H. 1992. The silicon isotope composition of Archean BIF in the Gongchangling, Liaoning Province [J]. Science in China (Series B), (6): 626-631.
[27]  Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, meta morphism, geochemistry, and origin[J]. American Mineralogist, 90(10): 1473-1499.
[28]  Leake B E. 1997. Nomenclature of amphibole[J]. The Canadian Mine ralogist, 35: 219-246.
[29]  Li D X, Zhao Y M, Feng C Y, Wu L S and Cheng W M. 2008a. SHRIMP U-Pb zircon dating of Mcsoproterozoic anatase-inriched ore beds and granite in the Yangtizishan-Moshishan anatase ore deposit, Inner Mongolia and its geological significance [J]. Mineral Deposits, 27(4): 449-458.
[30]  Li D X, Zhao Y M, Wang P H and Feng C Y. 2008b. Petrology and geochemical characteristics of amphibolitcs in Yangtizishan Moshishan anatase ore deposit, Inner Mongolia[J]. Mineral Deposits, 27 (4): 474-482.
[31]  Li B Y, Qian Z Q, Zhou J M, Xu S K and Yang L P. 1998. Tectonic conditions necessary for rutile mineralization in the eastern segment of Qinling mountains[J]. Geology of Chemical Minerals, 20 (1): 17-24.
[32]  Ma L F, Qiao X F, Min L R, Fan B X and Ding X Z. 2002. Geological atlas of China [M]. Heijing: Geol. Pub. House. 1-348.
[33]  更多...
[34]  Office of the National Mineral Rescrves Committee. 1986. Consuh handbook of the mincral resources [M]. Beijing: Geol. Pub. House. 1-672.
[35]  Rebert F and Chaussidon M. 2006. A palaeotempcrature curve for the Prccambrian oceans based on silicon isotopes in cherts [J]. Nature, 443:969-972.
[36]  Ren J S, Jiang C F, Zhang Z K and Qin D Y. 1980. Gcotcetonics of China and their evolution [M]. Beijing: Science Press. 1-124.
[37]  Yu J J, Chen Z Y, Wang P A, Li X F, Huang J P and Wang H. 2006. Trace elements geochemistry of eclogitcs in the northern Jiangsu Province, eastern China [J]. Acta Pctrologica Sinica, 22 (7) : 1883-1890.
[38]  Zack T, Kronz A, Foley S F and Rivers T. 2002. Trace clement abundances in rutiles from eclogites and associated garnet mica schists[J]. Chemical Geology, 184:97 122.
[39]  Zack T, Moraces R and Krone A. 2004a. Temperature dependence of Zr in rutile: Empirical calibration of a rutilc thermometer[J]. Contributions to Mineralogy and Petrology, 148:471 488.
[40]  Zack T, von Eynatlen H and Kronz A. 2004b. Rutile geochemistry and its potential use in qualitative provenance studies [J]. Sedimentary Geology, 171 : 37-58.
[41]  Zhao Y M and Wu L S. 2004. Metallogeny of the major ore deposits in China [M]. Beijing: Geol. Pub. House. 13-62.
[42]  Zhao Y M, Li D X, Chen W M, Feng C Y and Sun W H. 2006. Yangtizishan metamorphosed sedimentary titanium deposit: Discovcry of new genetic type of titanium deposit andtheir metallogenic characteristics[J]. Mineral Deposits, 25 (2) : 113-122.
[43]  Zhao Y M, Li D X, Wu L S, Ma R and Chcn W M. 2008a. Two different genetic types of anatase-dominated rich ores in Yangtizishan- Moshishan titanium deposit and thdr metallogenic characteristics[J]. Mineral Deposits, 27(4) : 459-465.
[44]  Zhao Y M, Li D X, Han J Y and Yu J. 2008b. Mineralogical characteristics of anatase, rutile and ilmenite in Yangtizishan Moshishan titanium ore deposit, Inner Mongolia[J]. Mineral Deposits, 27 (4): 466-473.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133