全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2011 

热液金矿成矿作用地球化学研究综述

Keywords: 地球化学,热液型金矿,富集形式,成矿作用,综述

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章总结了热液金矿成矿地球化学研究进展,其中包括含金热液来源、控制岩浆热液中金浓度的因素、金在热液中的富集和沉淀机制以及热液金矿成矿地球化学环境。含金岩浆演化早期,磁铁矿、磁黄铁矿和钛铁尖晶石结晶分异会影响岩浆演化形成热液型金矿的能力。与金成矿有关的地热流体中w(Au)为1×10-9~80×10-6,岩浆热液中w(Au)在1×10-6~4×10-6之间变化。金主要以Au-Cl和Au-HS络合物形成运移富集,当热液体系的压力较高(>20MPa)时,Au-HS或Au-Cl络合物在热液气相中富集。流体混合、沸腾、不混溶和水岩反应等引起的热液物理化学条件变化会导致金络合物的溶解度降低,发生金矿化。在含非晶质As2S3和Sb2S3溶胶的热液中,As2S3和Sb2S3溶胶可以吸附金硫络合物并携带其随热液运移,Au最终随着溶胶沉淀而沉淀。在硫逸度较低〔logf(S2)<-12〕而砷浓度较高的热液中,As可以增大Au的溶解度,As溶解度降低引起含砷矿物和金矿物沉淀,形成含砷黄铁矿-毒砂-自然金/银金矿或自然砷-自然金/银金矿矿物组合。在温度高于自然铋(271.4℃)或铋碲化物(富Bi端266℃,富Te端413℃)熔点的热液中,自然铋和铋-碲化物以熔融状态与热液共生,并吸附热液中的Au,当热液温度降低至Au-Bi(241℃)、Au-Bi-Te(235℃)熔体的熔点时,结晶形成自然铋-自然金-黑铋金矿或自然铋-自然金-铋碲化物组合。含金成矿热液沿着有利热液通道运移过程中,与围岩反应导致围岩发生硅化、绢云母化、碳酸盐化以及硫化等蚀变。中-碱性热液体系中,绢云母化会导致金矿化发生。热液蚀变矿物组合反应了成矿体系的物理化学条件,可以用于推断金矿成矿地球化学环境。

References

[1]  Tosdal R M;Cline J S;Fanning C M;Wooden J L,Lead in the Getchell-Turquoise Ridge Carlin-type gold deposits from the perspective of potential igneous and sedimentary rock souces in Northern Nevada:Implications for fluid and metal source,Economic Geology,2003.
[2]  Tormanen T O;Koski R A,Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits,Escanaba Trough,Southern Gorda Ridge,Economic Geology,2005.
[3]  Hutchison M N;Scott S D,Sphalerite geobarometry in the CuFe-Zn-S system,Economic Geology,1981.
[4]  Williams-Jones A E;C,Controls of mineral parageneses in the system Fe-Sb-S-O,Economic Geology,1997.
[5]  Widler AM. ;Seward TM.,The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces [Review],Geochimica et Cosmochimica Acta?,2002, 66(3).
[6]  更多...
[7]  Wells J D;Mullens T E,Gold-bearing arsenian pyrite determined by microprobe analysis,Cortez and Carlin gold mine,Nevada,Economic Geology,1973.
[8]  Piantone P;Wu X;Touray J,Zoned hydrothermal alteration and genesis of the gold deposit at Le Chatelet (French Massif),Economic Geology,1994.
[9]  Okamoto H;Massalski T B,The Au-Bi (gold-bismuth) system,Journal of Phase Equilibria,1983.
[10]  Oberthur T;Weiser T,Gold-bismuth-telluride-sulphide assemblages at the Viceroy mine,Harare-Bindura-Shamva greenstone belt,Zimbabwe,Mineralogical Magazine,2008.
[11]  So C S;Yun S T,Jurassic mesothermal gold mineralization of the Samhwanghak Mine,Youngdong Area,Republic of Korea:Constraints on hydrothermal fluid geochemistry,Economic Geology,1997.
[12]  Sisson T W,Native gold in a Hawaiian alkalic magma,Economic Geology,2003.
[13]  Simmons S F;Brown K L,The flux of gold and related metals through a volcanic arc,Taupo Volcanic Zone,New Zealand,Geological Society of America,2007.
[14]  Rose A W;Burt D M,Hydrothermal alteration,New York:Wiley-Interscience,1979.
[15]  Renders P J;Seward T M,The adsorption of thio gold (Ⅰ)complexes by amorphous As2S3 and Sb2S3 at 25 and 90℃,Geochimica et Cosmochimica Acta,1989.
[16]  Reich M;Kesler S E;Utsunomiya S;Palenik C S Chryssoulis S L and Ewing R C,Solubility of gold in arsenian pyrite,Geochimica et Cosrnochimica Acta,2005.
[17]  Pudack C;Halter W E;Heimich C A;Pettke T,Evolution of magmatic vapor to gold-rich epithermal liquid:Theporphyry to epithermal transition at Nevadis de Famatina,Northwest Argentina,Economic Geology,2009.
[18]  Choi S G;Youm S J,Composition variation of arsenopyrite and fluid evolution at the Ulsan deposit,southeastern Korea:A low-sulfidation porphyry system,The Canadian Mineralogist,2000.
[19]  Chen D X;Zhou L Y;Li F L,The study of physico-chemical conditions of mineralization of Ag-Pb ore deposit in Yindongzi,Shanxi Province,Earth Sciences,1986.
[20]  Archibald S M;Migdisov A A;Williams-Jones A E,The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures,Geochimica et Cosmochimica Acta,2001.
[21]  F. Gibert ;M.-L. Pascal ;M. Pichavant,Gold solubility and speciation in hydrothermal solutions: Experimental study of the stability of hydrosulphide complex of gold (AuHS°)at 350 to 450 ℃ and 500 bars,Geochimica et Cosmochimica Acta?,1998, 62(17).
[22]  Gammons C H;Yu Y M;Williams-Jones A E The disproportionations of gold (Ⅰ) chloride complexes at 24 to 200℃ [J] 1997(10) doi:10.1016/S0016-7037(97)00060-4
[23]  Gammons C H;Williams-Jones A E,The solubility of Au-Ag alloy + AgCl in HCl/NaCl solutions at 300℃:New data on the stability of Au(Ⅰ) chloride complexes in hydrothermal fluids,Geochimica et Cosmaochimica Acta,1995(17).
[24]  Muller D;Kaminski K;Uhlig S;Graupner T Herzig P M and Hunt S,The transition from porphyry-to epithermal-style gold mineralization at Ladolam,Lihir Island,Papua New Guinea:A reconnaissance study,Mineralium Deposita,2002.
[25]  Mann A W,Mobility of gold and silver in lateritic weather profiles:Some observations from Western Australia,Economic Geology,1984.
[26]  Lusk J;Ford C E,Experimental extension of the sphalerite geobarometer to 10 kbar,American Mineralogist,1978.
[27]  Heinrich, C.A. ;Audetat, A. ;Ulrich, T. ;Frischknecht, R. ;Gunther, D.,Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions,Geology?,1999, 27(8).
[28]  Heinrich C A;Eadington P J,Themodynamic predictions of the hydrothermal chemistry of arsenic and their significance for the paragenetic sequence of some cassiterite-arsenopyrite-base metal sulfide deposit,Economic Geology,1986.
[29]  Hedenquist J W;Lowenstem J B,The role of magmas in the formation of hydrothermal ore deposits,Nature,1994.
[30]  Hayashi K;Ohmoto H,Solubility of gold in NaCl-and H2Sbearing aqueous solutions at 250-350℃,Geochimica et Cosmochimica Acta,1991(08).
[31]  Harris A C;Kamenetsky V S;White N C;Achterbergh E and Ryan C G Melt inclusions in veins:Linking magmas and porphyry Cu deposits [J] 2003 doi:10.1126/science.1089927
[32]  Halter WE ;Pettke T ;Heinrich CA,The origin of Cu/Au ratios in porphyry-type ore deposits,Science?,2002, 296(5574).
[33]  God R;Zemann J,Native arsenic-realgar mineralization in marbles from Saualpe,Carinthia,Australia,Mineralogy and Petrology,2000.
[34]  Bryndzia L T;Scott S D;Spry P G,Sphalerite and hexagonal pyrrhotite geobarometer:experimental calibration and application to the metamorphosed sulfide ores of Broken Hill,Australia,Economic Geology,1988.
[35]  Brown K L;Simmons S F,Precious metals in high-temperature geothermal systems in New Zealand,Geothermics,2003.
[36]  Davies A G;Cooke D R;Gemmell J B;Leeuwen T,Cesare P and Hartshorn G,Hydrothermal breccias and veins at the Kelian gold mine,Kelimantan,Indonesia:Genesis of a large epithermal gold deposit,Economic Geology,2008.
[37]  Davies AG;Cooke D R;Gemmell J B;Simpson K A,Diatreme breccias at the Kelian gold mine,Kalimantan,Indonesia:Precursors to epithermal gold mineralization,Economic Geology,2008.
[38]  Czamanske G K,The FeS content of sphalerite along the chalcopyrite-pyrite-bornite sulfur fugacity buffer,Economic Geology,1974.
[39]  DAVID R. COOKE ;PETER HOLLINGS ;JOHN L. WALSHE,Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls,Economic geology?,2005, 100(5).
[40]  An F;Zhu Y F Native antimony in the Baogutu gold deposit (west Junggar,NW China):Its occurrence and origin [J] 2010 doi:10.1016/j.oregeorev.2010.03.005
[41]  N. J. Cook ;C. L. Ciobanu,Bismuth tellurides and suphosalts from the Larga hydrothermal system, Metaliferi Mts., Romania: Paragenesis and genetic significance,Mineralogical Magazine?,2004, 68(2).
[42]  Cole A;Wilkinson J J;Halls C;Serenko T J,Geological characteristics,tectonic setting and preliminary interpretations of the Jilau gold-quartz vein deposit,Tajikistan,Mineralium Deposita,2000.
[43]  刘家军;杨丹;刘建明;柳振江 杨艳 毛光剑 郑明华.卡林型金矿床中自然砷的特征与成矿物理化学条件示踪[J].地学前缘,2007(5)
[44]  Bendezu R;Fontbote L Cordilleran epithermal Cu-Zn-Pb-(Au-Ag) mineralization in the Colquijirca District,Central Peru:deposit-scale mineralogical patterns [J] 2009 doi:10.2113/gsecongeo.104.7.905
[45]  An F;Zhu Y F.Studies on geology and geochemistry of alteration-type ore in Hatu gold deposit (western Junggar),Xinjiang,NW China[J].Mineral Deposits,2007(6)
[46]  Cepedal A;Fuertes-Fuente M;Martin-Izard A;Gonzalez-Nistal S and Rodriguez-Pevida L,Tellurides,selenides and Bi-mineral assemblages fron the Rio Narcea Gold Belt,Asturias,Spain:Genetic implications in Cu-Au and Au skarns,Mineralogy and Petrology,2006.
[47]  Cathelineau M;Boiron M C;Holloger P;Marion P and Denis M,Gold in arsenopyrites,crystal chemistry,location and state,physical and chemical conditions of deposition,Economic Geology (Monograph),1989.
[48]  An F;Zhu Y F,Significance of native arsenic in the Baogutu gold deposit,Western Junggar,Xinjiang,NW China,Chinese Science Bulletin,2009(10).
[49]  Cathelineau M Cation site occupancy in chlorites and illites as a function of temperature [J] 1988 doi:10.1180/claymin.1988.023.4.13
[50]  Cathelineau M;Nieva D,A chlorite solution geothermometer.The Los Azufres (Mexico) geothermal system,Contributions to Mineralogy & Petrology,1985.
[51]  Candela P A,A review of shallow,ore-related granites:Texture,volatiles and ore metals,Journal of Petrology,1997.
[52]  Buchholz P;Oberthur T,Multistage Au-As-Sb mineralization and crustal-scale fluid evolution in the Kwekwe District,Midlands Greenstone belt,Zimbabwe:A combined geochemical,mineralogical,stable isotope,and fluid inclusion study,Economic Geology,2007.
[53]  Bryndzia L T;Scott Sd;SpryPG,Sphalerite and hexagonal pyrrhotite geobarometer:Correction in calibration and application,Economic Geology,1990.
[54]  丁存根;张术根;马春;徐忠发.宁镇中段矽卡岩型矿床的闪锌矿及其地质压力计应用讨论[J].地质学刊,2009(2)doi:10.3969/j.issn.1674-3636.2009.02.124
[55]  陈德兴;周乐尧;李方林,陕西柞水银硐子银铅矿床成矿物理化学条件研究,地球科学-中国地质大学学报,1986.
[56]  安芳,朱永峰.新疆哈图金矿蚀变岩型矿体地质和地球化学研究[J].矿床地质,2007(6)
[57]  Zhu Y F;Zeng Y S;Jiang N,Geochemistry of the ore-forming fluids in gold deposits from the Taihang Mountaina,Northern China,International Geology Review,2001.
[58]  Zheng B;An F;Zhu Y F.Native bismuth found in Baogutu gold deposit and its geological significance[J].Acta Petrologica Sinica,2009(6)
[59]  Zhang Z C;Mao J W;Wang F S;Pirajno F,Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province,SW China,American Mineralogist,2006.
[60]  Sherlock R L;Tosdal R M;Lehrman N J;Graney J R Losh S Jowett E C and Kesler S E,Origin of the McLaughlin mine sheeted vein complex:Metal zoning,fluid inclusion,and isotopic evidence,Economic Geology,1995.
[61]  Shenberger D M;Barnes H L,Solubility of gold in aqueous sulfide solutions from 150 to 350℃,Geochimica et Cosmochimica Gcta,1989(02).
[62]  Sharp Z D;Essene E J;Kelly W C,A re-examination of the arsenopyrite geothermeter:Pressure considerations and applications to natural assemblages,Canadian Mineralogist,1985.
[63]  Webster J G,The solubility of gold and silver in the systerm AuAg-S-O2-H2O at 25℃ and 1 atm,Geochimica et Cosmochimica Acta,1986(09).
[64]  Ulrich T;Gunther D;Heirrich C A,Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits,Nature,1999.
[65]  Benning LG. ;Seward TM.,HYDROSULPHIDE COMPLEXING OF AU(I) IN HYDROTHERMAL SOLUTIONS FROM 150-400-DEGREES-C AND 500-1500BAR,Geochimica et Cosmochimica Acta?,1996, 60(11).
[66]  Tooth, B ;Brugger, J ;Ciobanu, C ;Liu, WH,Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids,Geology?,2008, 36(10).
[67]  Simon G;Kesler S E;Chryssoulis S,Geochemistry and textures of gold-bearing arsenian pyrite,Twin Creeks,Nevada:Implications for deposition of gold in carlin-type deposits,Economic Geology,1999.
[68]  Sillitoe R H,Porphyry copper systems,Economic Geology,2010.
[69]  Arehart G B Characteristics and origin of the sediment-hosted disseminated gold deposits:A review [J] 1996 doi:10.1016/S0169-1368(96)00010-8
[70]  Jowett E C,Fitting iron and magnesiurn into the hydrothetmal chalorite geothemmometer,Annual Meeting,Toronto,Abstract,1991.
[71]  Ilchik R P;Barton M D,An amagmatic origin of carlin-type gold deposits,Economic Geology,1997.
[72]  Zacharias J;Paterova B;Pudilova M,Mineralogy,fluid inclusion,and stable isotope constraints on the genesis of Roudny Au-Ag deposit,Bohemian Massif,Economic Geology,2009.
[73]  Wood S A;Samson I M,Solubility of ore minerals and complexations of ore metals in hydrothemal solutions,Reviews in Economic Geology,1998.
[74]  Williams-Jones A E;Bowell R J;Migdisov A A,Gold in solution,Element,2009.
[75]  Pope J G;Brown K L;McConchie D M,Gold concentrations in springs at Waiotapu,New Zealand:Implications for precious metaldeposition in geothermal systems,Economic Geology,2005.
[76]  Pope J G;McConchie D M;Clark M D;Brown K L,Diurnal variarions in the chemistry of geothermal fluids after discharge,Champagne Pool,Waiotapu,New Zealand,Chemical Geology,2004.
[77]  Baker T;Pollard P J;Mustard R;Mark G and Graharn J L,A comparison of granite-related tin,tungsten,and gold-bismuth deposits:Implications for exploration,Segue newsletter,2005(5).
[78]  Tornkins A G,Redistribution of gold within arsenopyrite and lollingite during pro and retrograde metamorphism:Application to timing of mineralization,Economic Geology,2001.
[79]  Timon S M;Moro M C;Cembranos M L,Mineralogical and physicochemical evolution of the Los Santos scheelite skarn,Salamanca,NW Spain,Economic Geology,2009.
[80]  Taylor H P,Oxygen and hydrogen isotope relatioas in hydrothermal ore deposits,New York:wiley,1979.
[81]  Sun W D;Arculus R J;KamenetskyVS;Binns RA,Release of gold-bearing fluids in convergent margin magmas promopted by magnetite crystallization,Nature,2004.
[82]  Simon A C;Candela P A;Piccoli P M;Mengason M and Englander L,The effect of crystal-melt partitioning on the budgets of Cu,Au,and Ag,American Mineralogist,2008.
[83]  Simon A C;Pettke T;Candela P A;Piccoli P M and Heinrich C A,Experimental determination of Au solubility in rhyolite melt and magnetite:Constraints on magmatic Au budgets,American Mineralogist,2003.
[84]  Battaglia S,Variations in the chemical composition of illite fromfive geothermal fields:A possible geothermometer,Clay Minerals,2004.
[85]  Simon G;Huang H;Penner-Hahn J E;Kesler S E and Kao L S,Oxidation state of gold and arsenic in gold-bearing arsenian pyrite,American Mineralogist,1999.
[86]  Kretschmar U;Scott S D,Phase relations involving arsenopyrite in the system Fe-As-S and their application,Canadian Mineralogist,1976.
[87]  Stephen E. Kesler ;Lee Riciputi ;Zaojun Ye,Evidence for a magmatic origin for Carlin-type gold deposits: isotopic composition of sulfur in the Betze-Post-Screamer Deposit, Nevada. USA,Mineralium deposita?,2005, 40(2).
[88]  Kamenov G D;Saunders J A;Haies W E;Unger D L,Mafic magmas as sources for gold in Middle Miocene epithermal deposits of the Northern Great Basin,United State:Evidence from Pb isotope cxmpcsitions of native gold,Economic Geology,2007.
[89]  Ciobanu C L;Cook N J;Pring A,Bismuth tellurides as gold scanvengers,Berlin Heidelberg,New York:Springer-Verlag,2005.
[90]  Christie A B;Simpson M P;Brathwaite R L Epithermal AuAg and related deposits of the Hauraki goldfield,Coromandel volcanic zone,New Zealand [J] 2007 doi:10.2113/gsecongeo.102.5.785
[91]  Seward T M,The hydrothermal geochemistry of gold,Glasrow:Blackie and Son,1991.
[92]  Seward T M Thio complexes of gold and the transport of gold in hydrothermal ore solutions [J] 1973(03) doi:10.1016/0016-7037(73)90207-X
[93]  Scott S D,Chemical behavior of sphalerite and arsenopyrite in hydrothermal and metamorphic environments,Mineralogical Magazine,1983.
[94]  Scott S D,Experimental calibration of the sphalerite geobarometer,Economic Geology,1973.
[95]  Ballantyne J M;Mooke J N Arsenic geochemistry systems [J] 1988 doi:10.1016/0016-7037(88)90102-0
[96]  Scott S D;Bames H L,Sphalerite geothermometry and geobarometry,Economic Geology,1971.
[97]  Lowenstem J B,Dissolved volitle concemtrations in an ore-forming magma,Geology,1994.
[98]  Loucks R R;Mavrogenes J A Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions [J] 1999 doi:10.1126/science.284.5423.2159
[99]  Liu J J;Yang D;Liu J M;Liu Z J Yang Y Mao G J and Zheng M H,Mineralogical characteristics of native arsenic and tracing the metallogenic physicochemical condition in Carlin-type gold deposit,Earth Sciences Frontiers,2007.
[100]  Landtwing, MR ;Pettke, T ;Halter, WE ;Heinrich, CA ;Redmond, PB ;Einaudi, MT ;Kunze, K,Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry,Earth and Planetary Science Letters?,2005, 235(1-2).
[101]  Douglas N;Mavrogenes J;Hack A;R,The liquid bismuth collector model:An alternative gold deposition mechanism.In:Understanding planet earth; searching for a sustainable future; on the starting blocks of the third millennium,Geokgical Society of Australia,2000.
[102]  Ding C G;Zhang S G;Ma C;Xu Z F,Genetic mineralogical properties of sphalerite and discussions on its geobarometer application in skam ore deposits in middle Ningzhen region,Journal of Geology,2009.
[103]  Ciobanu C L;Cook N J;Pring A;Brugger J Danyushevsky L V and Shimizu M,Invisible gold\' in bismuth chalcogenides,Geochimica Et Cosmochimica Acta,2009.
[104]  Ciobanu C L;Cook N J;Damian F;Damian G,An example from Alpine shear-remobilizates in the Highis Massif,Romania,Mineralogy and Petrology,2006.
[105]  Bissig T;Clark A H;Lee J K;Hodgson C J,Miocene landscape evolution and geomorphologic controls on epithermal processes in the El Indio-Pascua Au-Ag-Cu belt,Chile and Argentina,Economic Geology,2002.
[106]  Bemdt M E;Buttram T;Farley D;Seyfried W E,The stability of gold polysulfide complexes in aqueous sulfide solutions:100 to 150℃ and 100 bars,Geochimica et Cosmochimica Acta,1994(02).
[107]  郑波;安芳;朱永峰,包古图金矿中发现的自然铋及其找矿勘探意义,岩石学报,2009.
[108]  Demange M;Pascal M L;Rairnbault L;Armand J Forette M C Serment R and Touil A,The Salsigne Au-As-Bi-Ag-Cu deposit,France,Economic Geology,2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133