全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2011 

西藏甲玛铜多金属矿区成矿斑岩的岩浆混合作用:石英及长石斑晶新证据

Keywords: 地质学,石英,长石,显微结构,岩浆混合,甲玛,西藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

西藏甲玛矿区斑岩内石英和长石斑晶的阴极发光(CL)特征及元素含量变化有效记录了岩浆演化、混合及补给事件。石英斑晶的显微生长结构表明,原始岩浆经历过2次铁镁质岩浆混合作用。根据石英斑晶中Ti含量的变化可知,在2次溶蚀前后,石英结晶温度分别增高了约110℃和80℃。此外,斜长石斑晶的反环带及其Ba、Sr、Fe等元素的浓度梯度、钾长石的镶边结构、黑云母的筛状结构等,都有效地证明了铁镁质岩浆与长英质岩浆混合作用的存在。根据这些研究结果,初步构建了该矿区岩浆混合作用模型,并推测了岩浆混合过程。在16Ma左右,岩石圈地幔拆沉,软流圈物质上涌导致正常下地壳部分熔融,产生了含Mo的钾质岩浆。原始岩浆房内形成了第Ⅰ世代自形的高温石英晶体核。软流圈上涌诱发了含大量地幔组分的新生镁铁质下地壳部分熔融,产生了含Cu、富水、高f(O2)的埃达克质岩浆熔体,并与含Mo的长英质岩浆发生了第1次岩浆混合作用。在此过程中,早期石英核部溶蚀,形成了高Ti的溶蚀表面。这些高f(O2)的混合岩浆在浅部地壳形成了大型岩浆房,并排泄出含Cu、Mo岩浆流体。在岩浆房中,石英晶体形成了均匀的生长环带和第Ⅱ世代的石英斑晶核。地幔减薄和岩石圈拆沉直接引起了地壳强烈伸展,形成了垂直于碰撞带的正断层系统和裂谷,使岩浆房内部的压力急剧减小,岩浆快速侵位。岩浆房的突然腾空,诱发了地幔物质上涌,造成了第2次基性岩浆的混入,促使第Ⅰ世代和第Ⅱ世代石英斑晶的边缘发生溶蚀。正是两次基性岩浆的加入,为成矿提供了大量的Cu、S。这是形成甲玛超大型铜多金属矿床不可或缺的因素。

References

[1]  周云,西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化,成都:成都理工大学,2010.
[2]  郑文宝;陈毓川;宋鑫;唐菊兴 应立娟 黎枫佶 唐晓倩,西藏甲玛铜多金属矿元素分布规律及地质意义,矿床地质,2010(5).
[3]  张洪瑞;侯增谦;杨志明,特提斯成矿域主要金属矿床类型与成矿过程,矿床地质,2010(01).
[4]  应立娟;王登红;唐菊兴;畅哲生 屈文俊 郑文宝 王焕,西藏墨竹工卡县甲玛铜多金属矿不同矿石中辉钼矿Re-Os同位素定年及其成矿意义,地质学报,2010(08).
[5]  应立娟;唐菊兴;王登红;畅哲生 屈文俊 郑文宝,西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义,岩矿测试,2009(3).
[6]  唐菊兴;王登红;汪雄武;钟康惠 应立娟 郑文宝 黎枫估 郭娜 秦志鹏 姚晓峰 李磊 王友 唐晓倩,西藏甲玛铜多金属矿矿床地质特征及其矿床模型,地球学报,2010(04).
[7]  曲晓明;江军华;辛洪波;陈华,西藏冈底斯造山带几乎同时形成的两套埃达克岩为什么一套含矿一套不含矿,矿床地质,2010(03).
[8]  秦志鹏;汪雄武;多吉;周云 彭惠娟 唐晓倩,西藏甲玛中酸性侵人岩LA-ICP-MS锆石U-Pb定年及成矿意义,矿床地质,2011(02).
[9]  秦志鹏,西藏甲玛铜多金属矿床似埃达克岩的成岩成矿作用,成都:成都理工大学,2010.
[10]  彭惠娟;汪雄武;秦志鹏;侯林 周云,西藏甲玛铜多金属矿矿床岩浆-热液过渡的矿物学证据,成都理工大学学报(自然科学版),2010.
[11]  彭惠娟;汪雄武;秦志鹏;侯林 周云,石英显微构造阴极发光特征研究-以西藏甲玛岩体为例,矿物岩石地球化学通报,2010(03).
[12]  彭惠娟;汪雄武;唐菊兴;秦志鹏 周云 侯林,石英阴极发光在火成岩研究中的应用,岩矿测试,2010(02).
[13]  李小伟,莫宣学,赵志丹,朱弟成 黄丹峰,花岗岩类中钾长石巨晶成因研究进展,矿物岩石地球化学通报,2010(02).
[14]  丁林;岳雅慧;蔡福龙,西藏拉萨地块高镁钾质火山岩即对南北向裂谷形成时间和切割深度的制约,地质学报,2006(04).
[15]  陈斌;刘超群;田伟,太行山中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据,地学前缘,2006(02).
[16]  Zhang H R;Hou Z Q;Yang Z M,Metallogenesis and geodynamics of Tethyan metallogenic domain:A review,Mineral Deposits,2010(01).
[17]  更多...
[18]  Wiebe R A;Wark D A;Hawkins D P Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite,Coastal Maine [J] 2007 doi:10.1007/s00410-007-0202-z
[19]  Hou Z Q;Gao Y F;Meng X J,Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen,Acta Petrologica Sinica,2004(2).
[20]  Hibbard M J The magma mixing origin for mantled feldspars [J] 1981 doi:10.1007/BF00371956
[21]  Hayden L A;Watson E B;Wark D A,Rutile saturation and TiO2 diffusion in hydrous siliceous melts,2005.
[22]  Bruhn F;Bruckschen P;Meijer J;Stephan A Richter D K,Veizer J,Cathodoluminescence investigations and trace-element analysis of quartz by micro-PIXE:Implications for digenetic and provenance studies in sandstone,Canadian Mineralogist,1996.
[23]  Brian G R;Heather A L;Mark H R,Trace elements in hydrothermal quartz:Relationships to cathodoIuminescent textures and insights into vein formation,Geology,2008(7).
[24]  Andeerson U B;Eklund O,Cellular plagioclase intergrowths as a result of crystal-magma mixing in the Proterozoic and rapakivi batholith,SW Finland,Contributions to Mineralogy & Petrology,1994.
[25]  侯增谦,大陆碰撞成矿论,地质学报,2010(01).
[26]  侯增谦;高永丰;孟祥金,西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制,岩石学报,2004(02).
[27]  Zhou Y,Characteristic and evolution of ore-forming fluids from Jiama polymetallic copper deposit,Mozhugongka County,Tibet,成都:成都理工大学,2010.
[28]  Zheng W B;Chen Y C;Song X;Tang J X Ying L J Li F J,Tang X Q,Element distribution and geological significance in the Jiama copper polymetallic deposit,Tibet,Mineral Deposits,2010(05).
[29]  D.A. Wark ;W. Hildreth ;F.S. Spear ;D.J. Cherniak ;E.B. Watson,Pre-eruption recharge of the Bishop magma system,Geology?,2007, 35(3).
[30]  Wark D A;Watson E B Titaniq:A titanium-in-quartz geothermometer [J] 2006 doi:10.1007/s00410-006-0132-1
[31]  Ying L J;Wang D H;Tang J X;Chang Z S Qu W J Zheng W B,Wang H,Re-Os dating of molybdenite occurring in different rocks from and its metallogenic significance,Acta Geologica Sinica,2010(08).
[32]  Ying L J;Tang J X;Wang D H;Chang Z S Qu W J,Zheng W B,Re-Os isotopic dating of molybdenite in skarn from the Jiama copper polymetallic deposit of Tibet and its metallogenic significance,Rock and Mineral Analysis,2009(03).
[33]  Tindle A G,Trace element behavior in microgranular enclaves form grantic rocks,Amsterdam:Elsevier Science,1991.
[34]  Tang J X;Wang D H;Wang X W;Zhong K H Ying L J Zheng W B Li F J Guo N Qin Z P Yao X F Li L Wang Y,Tang X Q,Geological features and metallogenic model of the Jiama copper-polymetallic deposit in Tibet,Acta Geoscientica Sinica,2010(04).
[35]  Slaby H M,Mafic and felsic magma interaction in granites:The Hercynian Karkonosze pluton,Journal of Petrology,2008(02).
[36]  Stephen E;Kesler E;Essene J,Unusually Cu-rich magmas associated with giant porphyry copper deposits:Evidence from Bingham,USA Geology,2006.
[37]  Smith V C;Shane P;Nairn I A,Reactivation of a rhyolitic magma body by new rhyolitic intrusion before the 15.8 ka Rotora eruptive episode:Implications for magma storage in the Okataina Volcanic Centre,New Zealand,Journal of the Geological Society(London),2004.
[38]  Smith J V;Stenstrom R C,Electron-excited luminescence as a petrologic tool,Geology,1965.
[39]  Behnam Shafiei ;Michael Haschke ;Jamshid Shahabpour,Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran,Mineralium deposita?,2009, 44(3).
[40]  Remond G;Cesbron F;Chapoulie R,Cathodoluminescence applied to the micro characterization of mineral materials:A present status in experimentation and interpretation,Scanning Microscopy,1992(01).
[41]  Qu X M;Jiang J H;Xin H B;Chen H,A study of two groups of adakite almost simulteneously formed in Gangdese collisional orogen,Tibet:Why does one group contain copper mineralization and the other not,Mineral Deposits,2010(03).
[42]  Qin Z P;Wang X W;Dor J;Zhou Y Peng H J,Tang X Q,LA-ICP-MS U-Pb Zircon age of intermediate-acidic intrusive rocks in Jiama of Tibet and its metallogenic significance,Mineral Deposits,2011(02).
[43]  Qin Z P,The diagenesis and mineralization of adakite-like rock form Jiama copper polymetallic deposits of Tibet,成都:成都理工大学,2010.
[44]  Peng H J;Wang X W;Qin Z P;Hou L,Zhou Y,The magmatic-hydrothermal transition evidence from mineralogy of the Jiama copper-polymetallic deposit in Tibet,Journal of Chengdu University of Technolgy (Science),2010.
[45]  Peng H J;Wang X W;Qin Z P;Hou L,Zhou Y,The Characteristics of cathodoluminescence-visualized microstructure in quartz:A case study from the Jiama igneous rock in Tibet,Bulletin of Mineralogy Petrology and Geochemistry,2010(03).
[46]  Peng H J;Wang X W;TangJ X;Qin Z P Zhou Y,Hou L,The application of quartz cathodoluminescence in study of igneous rock,Rock and Mineral Analysis,2010(02).
[47]  Pembroke J W;D\'Lemos R S,Mixing between granite magmas:Evidence from the south-west granite complex of Jersey,Proceedings of the Ussher Society,1996.
[48]  Neves S P;Vauchez A Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil [J] 1995 doi:10.1016/0024-4937(94)00012-Q
[49]  Miller A;Behr H J;Kerlhof A M,The evolution of late-Hercynian granites and royalfes documented by quartz:A review,Earth and Environmental Science Transactions of the Royal Society of Edinburgh,2009.
[50]  Müller A;Thomas R;Wiedenbeck M,Water content of granitic melts from Cornwall and Erzgebirge:A Raman spectroscopy study of melt inclusions,European Journal of Mineralogy,2006.
[51]  Müller A;Breiter K;Seltmann R,Quartz and feldspar zoning in the Eastern Erzgebirge pluton (Germany,Czech Republic):Evidence of multiple magma mixing,Litlos,2005.
[52]  Müller A;René M;Behr H J,Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock,Mineralogy and Petrology,2003.
[53]  Müiller A;Kronz A;Briefer K,Trace elements and growth patterns in quartz:A fingerprint of the evolution of the sub-volcanic poodles granite system,Bull Czech Geological Survey,2002(02).
[54]  Müller A,Cathodoluminescence and characterization of defect structures in quartz with applications to the study of granitic rocks,G(o)ttingen:Georg-AugustUniversit(a)t zu G(o)ttingen,2000.
[55]  Li X W;Mo X X;Zhao Z D;Zhu D C,Huang D F,The origin of K-feldspar megacryst in granitoids:A critical review,Bulletin of Mineralogy Petrology and Geochemistry,2010(02).
[56]  Lemos R S,Mixing between granitic and dioritic crystal mushes,Guernsey,Channel Islands,U.K,Lithos,1996.
[57]  Lemos R S,Magma-mingling and melt modification between granitic pipes and host diorite,Guernsey,Channel Islands,Journal of the Geological Society(London),1992.
[58]  Keiko H;Hattori? Jeffrey D;Keith,Contribution of mafic melt to porphyry copper mineralization:Evidence from Mount Pinatubo,Philippines,and Bingham Canyon,Utah,USA,Mineral Deposits,2001.
[59]  Hou Z Q,Metallogensis of Continental Collision,Acta Geolog ica Sinica,2010(01).
[60]  Ginibre C;Wfmer G;Kronz A,Minor-and trace-elementzoning in plagioclase:Implications for magma chamber processes at Parinacota volcano,northern Chile,Contributions to Mineralogy & Petrology,2001.
[61]  Ding L;Yue Y H;Cai F L,Geochemical and Sr-Nd-O isotopic characteristics of the high-Mg ultrapotassic rocks in Lhasa block of Tibet:Implications in the onset time and depth of NS-striking rift system,Acta Geologica Sinica,2006(04).
[62]  Didier J;Barbarin B,Enclaves and granite petrology,Amsterdam:Elsevier Science,1991.
[63]  Chen B;Liu C Q;Tian W,Magma-mixing between mantleand crustal-derived melts in the process of Mesozoic magmatism,Taihangshan:Constraints from petrology and geochemistry,Geoscience Frontiers,2006(02).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133