全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2001 

浅成-次火山岩黑云母Cu,Au成矿示踪意义

Keywords: 浅成-次火山岩,黑云母,铜金成矿示踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

浅成-次火山岩是许多斑岩型和斑岩-浅成低温热液复合型铜、金矿床矿质和流体的重要来源,斑岩体初始岩浆的Cu,Au丰度,Cl,F含量及岩浆结晶时的氧逸度是其能否最终形成含Cu,Au流体的关键因素。黑云母是浅成-次火山中酸性侵入体中最常见的铁镁矿物,含有较丰富的Cu,Au及挥发分Cl,F,其Fe3+/(Fe3++Fe2+)比值可以反映其结晶时岩浆的氧化还原状态,尤其是斑晶黑云母往往形成于岩浆流体出溶和去气作用发生之前,它能灵敏地指示其母岩浆的初始Cu,Au丰度和Cl,F含量及氧化还原状态,因此,可以作为成矿物质、成矿流体来源的理想示踪矿物,并可用于评价浅成-次火山侵入体的成矿潜力。在一些斑岩型铜、金矿床和斑岩-浅成低温热液型金、铜矿床分布区开展浅成-次火山侵入体黑云母的成矿示踪研究,对于解决矿床成因和指导找矿实践均具有重要意义。

References

[1]  [1]陈培荣. 1996. 盐源斑岩铜矿流体包裹体中黄铜矿子矿物的发现[J]. 科学通报, 41(7): 633~635.
[2]  [2]芮宗瑶, 黄崇轲. 1984. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社.
[3]  芮宗瑶, 张洪涛, 王龙生, 等. 1995. 吉林延边地区斑岩型-浅成低温热液型金铜矿床[J]. 矿床地质, 14(2): 99-126.
[4]  [4]张德全, 李大新, 赵一鸣, 等. 1996. 五子骑龙矿床--被改造的斑岩铜矿上部带[J]. 矿床地质, 15(2): 109~122.
[5]  [32]Spry P G. 1996. Evidence for a genetic link between gold-silver telluride and porphyry molybdenum mineralization at the Golden Sunlight deposit, Whitehall, Montana: fluid inclusion and stable isotope studies[J]. Econ. Geol., 91: 507~526.
[6]  [5]Arribas A Jr. 1995. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300ka in northern Luzon, Philippines[J]. Geology, 23: 337~340.
[7]  [6]Benning L G. 1996. Hydrosulfide complexing of gold(Ⅰ) in hydrothermal solutions from 150 to 500℃ and 500 to 1500 bars[J]. Geochim. Cosmochim. Acta, 60: 1849~1872.
[8]  [7]Bornhorst T J. 1986. Partitioning of gold in young calc-alkaline volcanic rocks from Guatemala[J]. J. Geol. 94: 412~418.
[9]  [8]Boyle R W. 1979. The geochemistry of gold and its deposits[Z]. Geol. Surv. Can. Bull., 208.
[10]  [9]andela P A. 1984. The partitioning of copper and molybdenum between silicate melts and aqueous fluids[J]. Geochim. Cosmochim Acta, 48: 373~380.
[11]  [10]Carroll M R. 1985. Sulfide and sulfate saturation in hydrous silicate melts[J]. J. Geophys. Research, 90( Supp.): C601~612.
[12]  [11]Chivas A R. 1981. Geochemical evidence for magmatic fluid in porphyry copper mineralization, Part I: Mafic silicates from the Koloula igneous complex[J]. Contrib. Mineral. Petrol. 78: 389~403.
[13]  [12]Connors K A. 1993. Initial gold contents of silicic volcanic rocks: bearing on the behavior of gold in magmatic systems[J]. Geology, 21: 937~940.
[14]  [13]Gammons C H. 1997. Chemical mobility of gold in porphyry-epithermal environment[J]. Econ. Geol. 92: 45~59.
[15]  [14]Giggenbach W F. 1992. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries[J]. Econ. Geol., 87: 1927~1944.
[16]  [15]Goff F. 1994. Gold degrassing and deposition at Galeras Volcano, Columbia[J]. GAS Today, 4: 241~247.
[17]  [16]Hamlyn R P. 1985. Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas[J]. Geochim. Cosmochim. Acta, 49: 1797~1811.
[18]  [17]Hendenquist J W. 1994. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 370: 519~527.
[19]  [18]Hendry D A F. 1981. Geochemical evidence for magmatic fluids in porphyry copper mineralization, Part Ⅱ: Ion-probe analysis of Cu contents of mafic minerals, Kloula Igneous Complex[J]. Contrib. Mineral. Petrol., 78: 404~412.
[20]  [19]Keays R R. 1987. Principles of mobilization(dissolution) of metals in mafic and ultramafic rocks--the role of immiscible magmatic sulphides in the generation of hydrothermal gold and volcanogenic massive sulphide deposits[J]. Ore Geol. Reviews, 2: 4763.
[21]  [20]Kesler S E. 1975. Geochemistry of biotites from mineralized and barren intrusive systems[J]. Econ. Geol., 70: 559~567.
[22]  更多...
[23]  [21]Le Cloarec. 1992. Radioactive isotopes and trace elements in gaseous emissions from White Island, New Zealand[J]. Earth Planet. Sci. Lett., 108: 19~28.
[24]  [22]Lowenstern J B. 1991. Evidence for extreme partitioning of copper into a magmatic vapour phase [J]. Science, 252: 1405~1409.
[25]  [23]Mason D R. 1978. Compositional variations in ferromagesian minerals from porphyry copper-generating and barren intrusions of the Western Highlands, Papua New Guinea[J]. Econ. Geol., 73: 878~890.
[26]  [24]Muller D. 1993. Direct and indirect associations between potassic igneous rocks, shosholites and gold-copper deposits[J]. Ore Geol. Rev., 8: 383~406.
[27]  [25]Olade M A. 1979. Copper and zinc in biotite, magnitite and feldspar from a porphyry copper environment, Higland Valley, British Columbia[J]. Canadian Mining Eng., 31: 1361~1370.
[28]  [26]Richards J P. 1995. Alkalic-type epithermal gold deposits--a reviews[A]. Mineralogical Association of Canada Short Course Series [Z]. Mineralogical Society of Canada. 367~400.
[29]  [27]Sawkins F J. 1981. High copper contents of fluid inclusions in quartz from northern Sonora: implications for ore genesis theory[J]. Geology, 9: 37~40.
[30]  [28]Sillitoe R H. 1989. Gold deposits in western Pacific island arcs: the magmatic connection[J]. Econ. Geol. Monograph, 6: 274~291.
[31]  [29]Sillitoe R H. 1995. Gold-rich porphyry copper deposits: geological model and exploration implications[J]. Geological Association of Canada Special Paper, 40: 465~478.
[32]  [30]Speer J A. 1984. Micas in igneous rocks[A]. In: Bailey, et al. ed. Mica[C]. Mineralogical Society of America. 299~355.
[33]  [31]Spooner E T C. 1993. Magmatic sulphide/volatile interaction as a mechanism for producing chalcophile element enriched Archean Au-quartz epithermal Au-Ag and Au skarn hydrothermal ore fluids[J]. Ore Geol. Rev., 7: 359~379.
[34]  [33]Stollery G. 1971. Chlorine in intrusives: a possible prospecting tool[J]. Econ. Geol., 66: 361~367.
[35]  [34]Vila T. 1991. Gold-rich porphyry systems in the Maricuga belt, northern Chile[J]. Econ. Geol., 86: 1238~1260.
[36]  [35]Wones D R. 1965. Stability of biotite: experiment, theory and applications[J]. Am. Mineral. 50: 1228~1272.
[37]  [36]Wybon D. 1994. Sulphur-undersaturated magmatism--a key factor for generating magma-related copper-gold deposits[J]. AGSO Research Newsletter, 21: 7~8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133