全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2002 

德兴斑岩铜矿成矿过程的氧、锶、钕同位素证据

Keywords: 地球化学,斑岩铜矿,成矿过程,热液流体,示踪,氧、锶、钕同位素,德兴

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探讨德兴铜厂斑岩铜矿床成矿热液流体的来源、作用范围、时空演化及Cu在热液流体中的行为和迁移方向等重要问题,对采集于该矿床南部不同蚀变程度的岩石进行了氧、锶、钕同位素分析。结果表明,虽然与铜厂斑岩铜矿成矿过程关的热液流体至少有3种,包括高温岩浆流体、来自深部围岩的非岩浆流体和大气降水,但是起主导作用的是岩浆流体。钕、锶同位素在空间上的变化表明,在成矿流体形成及演化过程中,锶同位素值由斑岩体内部向围岩接触带有规律地升高(0.705→0.711),指示了矿床是因热液流体将成矿元素从岩体内部迁移到接触带附近富集而成的,它符合斑岩铜矿的正岩浆模式。而钕同位素则相对稳定,可作为蚀变侵入体岩浆起源的示踪剂。

References

[1]  [19]Solomon G C and Taylor H P Jr. 1989. Isotopic evidence for the origin of Mesozoic and Cenozoic granitic plutons of the northern Great Basin [J]. Geol.,17: 591~594.
[2]  [20]Taylor H P Jr. 1968. The oxygen isotope geochemistry of igneous rocks [J]. Contrib. Mineral. Petrol.,19: 1~71.
[3]  更多...
[4]  [21]Taylor H P Jr and Forester R W. 1979. An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: A description of a 55m.y. old fossil hydrothermal system [J]. Petrol.,20: 355~419.
[5]  [22]Zhang L G,Liu J X,Chen Z S,et al. 1996. Hydrogen and oxygen evolution for water-rock system in super-huge Tongchang copper deposit,Jiangxi Province[J]. Scientia Geologica Sinica,31(3): 250~263 (in Chinese with English abstract).
[6]  [23]Zhu X,Rui Z Y,Huang C K,et al. 1983. Dexing porphyry Cu deposits[M]. Beijing: Geol. Pub. House. 1~336 (in Chinese).
[7]  [24]陈毓川,裴荣富,张宏良,等. 1989. 南岭地区与中生代花岗岩有关的有色及稀有金属矿床地质[M]. 北京: 地质出版社. 1~508.
[8]  [25]郭新生,季克俭,黄耀生,等. 1999. 德兴斑岩铜矿成矿热液的来源及其演化[J]. 高校地质学报,3: 260~268.
[9]  [26]季克俭,吴学汉,张国柄. 1989. 热液矿床矿源水源和热源及矿床分布规律[M]. 北京: 北京科技出版社. 3~22.
[10]  [27]金章东,朱金初,倪培,等. 2000. 再论德兴斑岩铜矿成矿物质来源[J]. 地质论评,46: 255~262.
[11]  [28]芮宗瑶,黄崇轲,齐国明,等. 1984. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社. 1~306.
[12]  [29]沈渭洲,凌洪飞,李武显,等. 1999. 中国东南部花岗岩Nd-Sr同位素研究[J]. 高校地质学报,5: 22~32.
[13]  [30]张理刚,刘敬秀,陈振胜,等. 1996. 江西德兴铜矿水-岩体系氢氧同位素演化[J]. 地质科学,31: 250~ 263.
[14]  [31]朱训,芮宗瑶,黄崇轲,等. 1983. 德兴斑岩铜矿床[M]. 北京: 地质出版社. 1~336.
[15]  [1]Allegre G J and Othman D B. 1980. Nd-Sr isotopic relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis [J]. Nature,286: 335~341.
[16]  [2]Bowman J R,Parry W T,Kropp W P,et al. 1987. Chemical and isotopic evolution of hydrothermal solutions at Bingham,Utah [J]. Econ. Geol.,82: 395~428.
[17]  [3]Carten R B,Geraghty E P,Walker B M,et al. 1988. Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit,Colorado [J]. Econ. Geol.,83: 266~296.
[18]  [4]Chen Y C,Pei R F,Zhang H L,et al. 1989. Rare-earth and nonferrous metal deposits related with the Nanling Mesozoic granites[M]. Beijing: Geol. Pub. House. 1~508 (in chinese).
[19]  [5]DePaolo D J and Wasserburg G J. 1979. Petrogenetic mixing models and Nd-Sr isotopic patterns [J]. Geochim. Cosmochim. Acta,43: 615~627.
[20]  [6]DePaolo D J,Manton W I,Grew E S,et al. 1982. Sm-Nd,Rb-Sr,and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills,Enderby Land,Antarctica [J]. Nature,298: 614~618.
[21]  [18]Sheppard S M F,Nielsen R L and Taylor H P Jr. 1971. Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits [J]. Econ. Geol.,66: 515~542.
[22]  [7]Farmer G L and DePaolo D J. 1984. Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure [J]. J. Geophys. Res.,89: 10141~10160.
[23]  [8]Guo X S,Ji K J,Huang Y S,et al. 1999.The origin and evolution for the ore-forming fluids of Tongchang porphyry copper deposit,Dexing: Oxygen isotopic constrains of granodiorites [J].Geol. J. China Univ. 5(3):260~268 (in Chinese with English abstract).
[24]  [9]Ji K J,Wu X H and Zhang G B. 1989. Water and heat sources of hydrothermal deposits and their distribution[M]. Beijing: Beijing Sci. Tech. Press. 3~22 (in Chinese).
[25]  [10]Jin Z D,Zhu J C,Ni P,et al. 2000. Further discussion on the source of ore-forming materials in the Dexing porphyry copper deposit,Jiangxi Province[J]. Geol. Rev.,46: 255~262 (in Chinese with English abstract).
[26]  [11]Keith J D and Shanks W C. 1988. Chemical evolution and volatile fugacities of the Pine Grove porphyry molybdenum and ash-flow tuff system,Southwestern Utah [J]. Canadian Mining Metallurgy,39: 402~423.
[27]  [12]Lowenstern J B. 1993. Evidence for a copper-bearing fluid in magma erupted at the Valley of Ten Thousand Smokes,Alaska [J]. Contrib. Mineral. Petrol.,114: 409~421.
[28]  [13]Norman D I and Landis G P. 1983. Source of mineralizing components in hydrothermal ore fluids as evidenced by 87Sr/86Sr and stable isotope data from the Pasto Bueno deposit,Peru [J]. Econ. Geol.,78: 451~465.
[29]  [14]Norman D K,Parry W T and Bowman J R. 1991. Petrology and geochemistry of porpylitic alteration at Southwest Tintic,Utah [J]. Econ. Geol.,86: 13~28.
[30]  [15]Rui Z Y,Huang C K,Qi G M,et al. 1984. Porphyry copper (molybdenum) deposits of China[M]. Beijing: Geol. Pub. House. 1~306 (in Chinese).
[31]  [16]Ruiz J,Jones L M and Kelly W C. 1984. Rubidium-strontium dating of ore deposits hosted by Rb-rich rocks,using calcite and other common Sr-bearing mineral [J]. Geol.,12: 159~262.
[32]  [17]Shen W Z,Ling H F,Li W X,et al. 1999.Nd and Sr isotope study of granites in southeast China[J]. Geol. J. China Univ.,5: 22~32 (in Chinese with English abstract).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133