全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2003 

云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带——流体包裹体和稳定同位素依据

Keywords: 地球化学,流体流动,矿化分带,逆冲推覆构造,流体包裹体,稳定同位素,兰坪

Full-Text   Cite this paper   Add to My Lib

Abstract:

滇西兰坪盆地北部发育了一类受逆冲推覆构造控制的浅成热液Cu-Ag-Pb-Zn矿化,形成了白秧坪、富隆厂、吴底厂、麻栗坪及金满、科登涧等大-中型矿床和矿点,并存在矿化分带。文章利用这些矿化脉体的流体包裹体和热液方解石的碳氧同位素组成资料,研究成矿流体与矿化分带的关系。结果表明,成矿流体主要属于NaCl-H2O成分体系,盐度w(NaCleq)为2%~11%,形成温度为170~300℃,形成于1.8~3.8km深度内,这些相似性说明这类矿化的发生具有相似的流体性质和沉淀机制。热液方解石在δ13C-δ18O图解中呈近水平线展布的型式,指示流体源自地壳浅部的地下水系统,与海相灰岩等围岩作用形成了溶解碳以[HCO3]-为主的成矿流体,流体与岩石的相互作用可能是成矿流体沉淀的主要机理。从西到东,流体包裹体的盐度_温度由高到低变化与矿化分带和逆冲推覆构造的根带→中带→锋带相配套,显示重力驱动流动可能是主要的流体流动机制。成矿流体在不同构造部位流动的通畅及流体_岩石系统的封闭_开放程度等流体流动性质与矿化发生的强度和规模有关,兰坪北部逆冲推覆构造中带的流体通畅地流动及沉淀时处于相对开放状态,有利于该区形成较大规模的浅成热液多金属矿化。

References

[1]  [57]叶庆同, 胡云中, 杨岳清, 等. 1992. 三江地区区域地球化学背景和金银铅锌成矿作用[M]. 北京: 地质出版社. 140~246.
[2]  [58]张峰根, 蒋鸿才. 1986. 怒江澜沧江金沙江地区第三纪推覆构造[J]. 地科院南京地矿所所刊, 增刊1号: 102~108.
[3]  [59]张乾, 邵树勋, 刘家军, 等. 2002. 兰坪盆地大型矿集区多金属矿床的铅同位素组成及铅的来源[J]. 矿物学报, 22:147~154.
[4]  [60]郑永飞. 2001. 稳定同位素体系理论模式及其矿床地球化学应用[J]. 矿床地质, 20(1):57~70.
[5]  [1]Bethke C M. 1986. Hydrologic constraints on the genesis of the upper Mississippi valley mineral district from Illinois basin brines[J]. Econ. Geol., 81: 233~249.
[6]  [2]Bodnar R J, Reynolds T J and Kuehn C A. 1985. Fluid-inclusion systematics in epithermal systems. In: Berger BR, Bethke PN, eds. Geology and geochemistry of epithermal system[J]. Rev. Econ. Geol., 2: 73~97.
[7]  [3]Cartwright I and Buick I S. 1999. The flow of surface-derived fluids through Alice Springs age middle-crustal ductile shear zones, Reynolds Range, central Australia[J]. J. Metamorphic Geol., 17: 397~414.
[8]  [4]Chamberlain C P, Zeitler P K, Barnett D E, et al. 1995. Active hydrothermal systems during the recent uplift of Nanga Parbat, Pakistan Himalaya[J]. J. Geophy. Res., 100: 439~495.
[9]  [5]Clendenin C W, Niewendorp C A, Duane M J, et al. 1994. The paleohydrology of Southeast Missouri MVT deposits: interplay of fault, fluids, and adjoining lithologies[J]. Econ. Geol., 89: 322~332.
[10]  [6]Evans M A and Battles D A. 1999. Fluid inclusion and stable isotope analyses of veins from the central Appalachain Valley and Ridge province: Implications for regional synorogenic hydrologic structure and fluid migration[J]. GSA Bulletin, 111: 1841~1860.
[11]  [7]Garven G, Ge S, Person M A, et al. 1993. Genesis of stratabound ore deposits in the Midcontinent basins of North America. 1. The role of regional groundwater flow[J]. Am. J. Sci., 293: 497~568.
[12]  [8]Ghisetti F, Kirschner D and Vezzani L. 2000. Tectonic controls on large-scale fluid circulation in the Apennines (Italy) [J]. J. Geochem. Explor., 69~70: 533~537.
[13]  [9]Gleeson S A, Yardley B W D, Boyce A J, et al. 2000. From basin to basement: the movement of surface fluids into the crust[J]. J. Geochem. Explor., 69~70: 527~531.
[14]  [10]Goldhaber M B, Church S E, Doe B R, et al. 1995. Lead and sulfur isotope investigation of Paleozoic sedimentary rocks from the southern midcontinent of the United States: implications for paleohydrology and ore genesis of the southeast Missouri lead belts[J]. Econ. Geol., 90: 1875~1910.
[15]  [11]Gray D R, Gregory R T and Durney D W. 1991. Rock-buffered fluid-rock interaction in deformed quartz-rich turbidite sequences, eastern Australia[J]. J. Geophy. Res., 96: 19681~19704.
[16]  [12]Hayba D O. 1997. Environment of ore deposition in the Creade mining district, San Juan mountains, Colorado, part Ⅴ: epithermal mineralization from fluid mixing in the OH vein[J]. Econ. Geol., 92:29~44.
[17]  [13]He K Z, Zhao C H, He H S, et al. 1996. Intracontinental rift and orogeny in western Yunnan[M]. Wuhan: China University of Geosciences Press. 52~85 (in Chinese with English summary).
[18]  [14]Helgeson H C. 1969. Thermodynamics of hydrothermal systems at elevated temperature and pressure[J]. Amer. J. Sci., 267: 729~804.
[19]  [15]Henley R W. 1985. The geothermal framework for epithermal deposits. In: Berger B R, Bethke P N, eds. Geology and geochemistry of epithermal system[J]. Rev. Econ. Geol., 2: 1~24.
[20]  [16]Hemley J I and Hunt J P. 1992. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: 2 some general geological applications[J]. Econ. Geol., 87: 23~43.
[21]  [17]Hu R Z, Zhong H, Ye Z J, et al. 1998. Helium, Argon isotopic geochemistry in Jinding giant Pb-Zn deposit, western Yunnan[J]. Sciences in China (D), 28: 208~213 (in Chinese).
[22]  [18]Krupp R E, Seward T M. 1990. Transport and deposition of metals in the Rotokawa geothermal system, New Zealand[J]. Mineralium Deposita, 25: 73~81.
[23]  [19]Li G X. 1994. A preliminary study of some thrust-nappe structures in Lanping basin[J]. Yunnan Geol., 13: 203~215 (in Chinese with English abstract).
[24]  [20]Li X Z, Liu W J, Wang Y Z, et al. 1999. The tectonic evolution and metallogenesis in the Tethys of the Sanjiang area, Southwestern China[M]. Beijing: Geol. Pub. House. 122~167 (in Chinese with English summary).
[25]  更多...
[26]  [21]Li X Z, Jiang X S, Sun Z M, et al. 2002. The collisional orogenic processes of the Nujiang-Lanchangjiang-Jinshajiang area, southwestern China[M]. Beijing: Geol. Pub. House. 90~200 (in Chinese with English summary).
[27]  [22]Liu Z Q, Li X Z, Ye Q T, et al. 1993. Division of tectono-magmatic zones and the distribution of deposits in the Sanjiang area[M]. Beijing: Geol. Pub. House. 6~74 (in Chinese with English summary).
[28]  [23]Luo J L, Yang Y H, Zhao Z, et al. 1994. Evolution of the Tethys in western Yunnan and mineralization for main metal deposits[M]. Beijing: Geol. Pub. House. 141~231 (in Chinese with English summary).
[29]  [24]Manatschal G, Mrquer D and Fruh-Green G L. 2000. Channelized fluid flow and mass transfer along a rift-related detachment fault (Eastern Alps, southeast Switzerland) [J]. GSA Bulletin, 112: 21~33.
[30]  [25]McCaig A M. 1997. The geochemistry of volatile fluid flow in shear zone. In. Holness M B, ed. Deformation-enhanced fluid transport in the earth\'s crust and mantle[M]. London: Chapman and Hall. 227~266.
[31]  [26]Muchez P, Sintubin M and Swennen R. 2000. Origin and migration pattern of palaeofluids during orogeny: discussion on the Variscides of Belgium and northern France[J]. J. Geochem. Explor., 69/70: 47~51.
[32]  [27]Ohmoto H. 1972. Systematics of Sulfur and carbon isotopes in hydrothermal ore deposits[J]. Econ. Geol., 67: 551~579.
[33]  [28]Oliver J. 1986. Fluids expelled tectonically from orogenic belts: their role hydrocarbon migration and other geologic phenomena[J]. Geology, 14: 99~102.
[34]  [29]Peng J T and Hu R Z. 2001. Carbon and oxygen isotope systematics in the Xikuangshan giant antimony deposit, central Hunan[J]. Geol. Rev., 47(1): 34~41 (in Chinese with English abstract).
[35]  [30]Plumles G S. 1994. Fluid chemistry evolution and mineral deposition in the main-stage Creade epithermal system[J]. Econ. Geol., 89:1860~1882.
[36]  [31]Qin G J and Zhu S Q. 1991. Genetic model and prospecting prediction of Jinding Pb-Zn ore deposit[J]. Yunnan Geol., 10: 145~190 (in Chinese with English abstract).
[37]  [32]Que M Y, Cheng D M, Zhang L S, et al. 1998. Copper deposits in Lanping and Simao basins[M]. Beijing: Geol. Pub. House. 37~70 (in Chinese with English summary).
[38]  [33]Savard M M and Kontak D. 1998. δ13C-δ18O-87Sr/86Sr covariations in ore-stage calcites at and around the Gays river Zn-Pb deposit (Nova Scotia, Canada)-evidence for fluid mixing[J]. Econ. Geol., 93: 818~833.
[39]  [34]Sverjensky D A and Garven G. 1992. Tracing great fluid migration[J]. Nature, 356: 481~482.
[40]  [35]Veizer J and Hoefs J. 1976. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks[J]. Geochim. Cosmochim. Acta, 40: 1387~1395.
[41]  [36]Xu Q D and Xia L. 1999. Pb isotopic compositions of two types of paleo-continents in Sanjiang region: 1. Carbonate rocks[J]. Earth Science J. China Univ. Geosci., 24: 274~277 (in Chinese with English abstract).
[42]  [37]Xu Q D and Xo X X. 2000. Regional fluid characters and regimes of"Sanjiang"middle belt during Neo-Tethys[J]. Acta Petrol. Sinica, 16: 639~648 (in Chinese with English abstract).
[43]  [38]Yan S X, Li C Y and Zhou C X. 1994. A preliminary study on the genesis of the dome structure in the Jinding Pb-Zn deposit with a dis-cussion on some related problems[J]. Mineral Deposits, 13(2): 148~154 (in Chinese with English abstract).
[44]  [39]Ye Q T, Hu Y Z and Yang Y Q, et al. 1992. Regional geochemical background and gold, silver and Lead-zinc mineralization in the Nujiang-Lancangjiang-Jinshajiang area[M]. Beijing: Geol. Publ. House. 140~246 (in Chinese with English summary).
[45]  [40]Zhang F G and Jiang H C. 1986. Teraiary nappes on Nujiang, Lanchangjiang and Jinshajiang district[J]. Bull. Nanjiang Inst. Geol., Supple 1: 102~108 (in Chinese with English abstract).
[46]  [41]Zhang Q, Shao S X and Liu J J. 2002. Lead isotopic composition and lead source of polymetallic deposits in the large ore assembly district in the Lanping basin[J]. Acta Mineral Sinica, 22: 147~154 (in Chinese with English abstract).
[47]  [42]Zheng Y F and Hoefs J. 1993. Carbon and oxygen isotopic covariations in hydrothermal calcites: theoretical modeling on mixing processes and application to Pb-Zn deposits in the Harz Mountains, Germany[J]. Mineralium Deposita, 28(1): 79~89.
[48]  [43]Zheng Y F. 2001. Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits[J]. Mineral Deposits, 20(1): 57~70 (in Chinese with English abstract).
[49]  [44]何科昭, 赵崇贺, 何浩生, 等. 1996. 滇西陆内裂谷与造山作用[M]. 武汉:中国地质大学出版社. 52~82.
[50]  [45]胡瑞忠, 钟宏, 叶造军, 等. 1998. 金顶超大型铅-锌矿床氦、氩同位素地球化学[J]. 中国科学(D), 28: 208~213.
[51]  [46]李光勋. 1994. 兰坪盆地某些逆冲推覆构造研究[J]. 云南地质,13:203~215.
[52]  [47]李兴振, 刘文均, 王义昭, 等. 1999. 西南三江地区特提斯构造演化与成矿[M]. 北京:地质出版社. 133~190.
[53]  [48]李兴振, 江新胜, 孙志明, 等. 2002. 西南三江地区碰撞造山过程[M]. 北京:地质出版社. 90~200.
[54]  [49]刘增乾, 李兴振, 叶庆同, 等. 1993. 三江地区构造岩浆带的划分与矿产分布规律[M]. 北京: 地质出版社. 75~117.
[55]  [50]罗君烈, 扬友华, 赵准,等. 1994. 滇西特提斯的演化及主要金属矿床成矿作用[M]. 北京: 地质出版社. 141~231.
[56]  [51]彭建堂, 胡瑞忠. 2001. 湘中锡矿山超大型锑矿床的碳氧同位素体系[J]. 地质论评, 47(1):34~41.
[57]  [52]覃功炯, 朱上庆. 1991. 金顶铅锌矿床成因模式及找矿预测[J]. 云南地质, 10: 145~190.
[58]  [53]阙梅英, 程敦模, 张立生, 等. 1998. 兰坪-思茅盆地铜矿床[M]. 北京:地质出版社. 71~91.
[59]  [54]徐启东, 夏林. 1999. 三江地区两类古陆成分的铅同位素组成:1. 碳酸盐岩类[J]. 地球科学, 24:274~277.
[60]  [55]徐启东, 莫宣学. 2000. 三江中段新特提斯阶段区域流体的性质与状态[J]. 岩石学报, 16:639~648.
[61]  燕守勋, 李朝阳, 周朝宪, 等. 1994. 金顶铅锌矿穹隆构造成因及其相关问题探讨[J]. 矿床地质,13(2):148-154.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133