全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2003 

冈底斯斑岩铜矿成矿时代及青藏高原隆升

Keywords: 地球化学,SHRIMP年龄,钾长石钾氩年龄,辉钼矿,铼锇年龄,青藏高原隆升

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过离子探针、K-Ar法和Re-Os法测得冈底斯斑岩铜矿带的成矿年龄。冈底斯斑岩铜矿带中驱龙石英二长花岗斑岩的SHRIMP年龄为(17.58±0.74)Ma,冲江二长花岗斑岩的SHRIMP年龄为(15.60±0.52)Ma,冲江闪长玢岩的SHRIMP年龄为(14.54±0.65)Ma。驱龙和冲江含矿斑岩钾长石的K_Ar年龄分别为(16.43±0.31)Ma和(15.77±0.45)Ma,矿石中辉钼矿的Re-Os年龄分别为(15.99±0.32)Ma和(14.85±0.69)Ma。因此驱龙和冲江斑岩铜矿的成矿年龄约束于(17.58±0.74)Ma~(14.85±0.69)Ma之间。驱龙石英二长花岗斑岩为强矿化岩石,冲江二长花岗岩斑岩为中等矿化岩石,冲江闪长玢岩为未矿化岩石,三者的年龄依次变小,放射性元素206Pb、U和Th含量则依次增高。这表明随着壳源物质混合的增强,铜矿化渐弱。立足于大西洋底栖有孔虫氧同位素变化和印度洋北部海底沉积扇的沉积速率变化来看青藏高原隆升,认为玉龙矿带和冈底斯矿带斑岩铜矿是在青藏高原两次最明显的地壳运动中形成的。

References

[1]  [1]Coleman M and Hodges K. 1995. Evidence for Tibetan plateau uplift before 14 Ma ago from a new minimun age for east-west extension[J]. Nature,374:49~52.
[2]  [2]Cui Z Z, Yin Z X, Gao E Y, et al. 1992. Velocity structure and deepseated structure of Qinghai-Xizang(Tibet) plateau[M]. Beijing: Geol. Pub. House. 1~112(in Chinese with English abstract).
[3]  [3]Cui J W, Zhu H, Wu C D, et al. 1992. Deformation and dynamics of the lithosphere in Qinghai-Xizang(Tibet)plateau[M]. Beijing: Geol. Pub. House. 1~165(in Chinese with English abstract).
[4]  [4]Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet[J]. Science, 255:1663~1670.
[5]  [5]Harrison T M, Copeland P and Kidd W S F. 1995. Activation of the wyaingentanghla shear zone:implication for uplift of the southern plateau[J]. Tectonics,14:656~676.
[6]  [6]Hou Z Q, Mo X T, Gao Y F, et al. 2003. Adakite, a possible host rock for porphyry copper deposits: case studies of porphyry copper belts in Tibetan plateau and in Northern Chile[J]. Mineral Deposits, 23(1):1~12(in Chinese with English abstract).
[7]  [7]Klootwijk C T,Conaghan P J and Powell C M. 1985. The Himalayan arc:large-scale continental subduction oroclinal bending and back-arc spreading[J]. Earth Planat. Sci. lett., 75: 167~183.
[8]  [8]Liang H Y. 2002. New advances in the research on diagenetic mineralization of porphyry copper deposits in eastsouth margin of the Qinghai-Xizang plateau[J]. Mineral Deposits, 21(4): 365 (in Chinese).
[9]  [9]Li T D. 1995. The uplifting process and mechanism of the Qinghai-Tibet plateau[J]. Acta Geoscientia Sinica,34(1):1~9(in Chinese with English abstract).
[10]  [10]Liu Z G, Xu X, Pan G T, et al. 1990. Tetonics, geological evolution and genetic mechanism of Qinghai-Xizang plateau[M]. Beijing: Geol. Pub. House. 1~174(in Chinese with English abstract).
[11]  [11]Miller K G, Faribanks K G and Mountain G S. 1987. Tertiary oxyges isotope synthesis, sea level history and Continental margin erosion[J]. Paleocanog, 2(1): 1~19.
[12]  [12]Molnar P, England P and Martinod J. 1993. Mantle dynamics, uplift of the Tibetan plateau and the Indian monsoon develop[J]. Rev. Geophys., 34:357~396.
[13]  [13]Pan B T,Fan X M,Li J J, et al. 1998. Uplifr and environmental changes of the Qinghai-Xizang(Tibetan)plateau during the late Cenozoic period[A]. In: Shi Y F,Li J J and Li B Y eds. Uplift and environmental changes of Qinghai-Xizang(Tibetan)plateau in the late Cenozoic[C]. Guangzhou: Guangdong Science and Technology Press. 1~463(in Chinese).
[14]  [14]Patriat P and Achche J. 1984. India-Eurasia collision chnonogy has implications for crustal shorting and driving mechanism of plate[J]. Nature, 311: 615~621.
[15]  [15]Prell W L and Kutgbach J E. 1992. Sensitivity of the Indiam Mosoon to foreing parameters and implications for its evolution[J]. Nature, 360: 647~652.
[16]  [16]Quade J, Corling T E and Bownan J R. 1989. Development of Asian Monsoon revealed by marked ecological shift during the latest Miocene in Northern Pakistan[J]. Nature, 342:163~166.
[17]  [17]Qu X M, Hou Z Q and Huang W. 2001. Is Gangdese porphyry copper belt the second "Yulong" copper belt[J]? Mineral Deposits, 20(4):355~366(in Chinese with English abstract).
[18]  [18]Rea D K. 1992. Delivery of Himalayan sediment to the Northern Indium Ocean and its relation to global climate, sea level, uplift and seawater strontium[J]. Geophys. Monogr., 70:389~402.
[19]  [19]Rui Z Y, Huang C K, Qi G M, et al. 1984. Porphyry copper(molybdenum)deposits of China[M]. Beijing: Geol. Pub. House. 1~350(in Chinese).
[20]  [20]Rui Z Y,li G M, Wang L S, et al. 2002. Porphyry copper deposits in Tibet[J]. Tibet Geology, 21(2):3~12(in Chinese with English abstract).
[21]  更多...
[22]  [21]Searle M. 1995. The rise and fall of Tibet[J]. Nature,374:17~18.
[23]  [22]Turner S, Hawkesworth C, Liu J, et al. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 364:50~54.
[24]  [23]Yin A, Harrison T M, Ryerson F J, et al. 1994. Tertiary structural evolution of the Gangdes thrust system,southeastern Tibet[J]. J. Geophys. Pef., 99(18): 175~201.
[25]  [24]Zhou X, Cao Y G, Zhu M Y, et al. 1984. Plate tectonic-lithofecies map of Xizang(Tibet), China(1∶1500000)[M]. Beijing: Geol. Pub. House. 1~158(in Chinese).
[26]  [25]崔作舟, 尹周勋, 高恩元, 等. 1992. 青藏高原速度结构和深部构造[M]. 北京: 地质出版社. 1~112.
[27]  [26]崔军文, 朱红, 武长得, 等. 1992. 青藏高原岩石圈变形及其动力学[M], 北京: 地质出版社. 1~165.
[28]  侯增谦, 莫宣学, 高永丰, 等. 2003. 埃达克岩: 斑岩铜矿一种可能的重要含矿母岩--以西藏和智利斑岩铜为例[J]. 矿床地质, 22(1): 1-12.
[29]  [28]梁华英. 2002. 青藏高原东南缘斑岩铜矿成岩成矿研究取得新进展[J]. 矿床地质, 21(4): 365.
[30]  李廷栋. 1995. 青藏高原隆升的过程和机制[J]. 地球学报, 34(1): 1~9.
[31]  [30]刘增乾, 徐宪, 潘桂棠, 等. 1990. 青藏高原大地构造与形成演化[M]. 北京: 地质出版社. 1~174.
[32]  [31]潘保田, 方小敏, 李吉均, 等. 1998. 晚新生代青藏高原隆升与环境变化[A]. 施雅风, 李吉均, 李炳元主编, 青藏高原晚新生代隆升与环境变化[C]. 广州: 广东科技出版社. 1~463.
[33]  [32]曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜矿(化)带:西藏第二系玉龙铜矿带[J]? 矿床地质,20(4): 355~366.
[34]  [33]芮宗瑶, 黄崇钶, 齐国明, 等. 1984. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社. 1~350.
[35]  [34]芮宗瑶, 李光明, 王龙生, 等. 2002. 西藏斑岩铜矿[J]. 西藏地质, 21(1): 3~12.
[36]  [35]周详, 曹佑功, 朱明玉, 等. 1984. 西藏板块-建造图(1∶1500000)[M]. 北京: 地质出版社. 1~158.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133