全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2004 

安徽铜陵矿集区海底喷流沉积体系的流体包裹体微量元素对比

Keywords: 地球化学,海底喷流沉积,流体包裹体,ICP-MS,微量元素

Full-Text   Cite this paper   Add to My Lib

Abstract:

铜陵矿集区与铜_金(多金属)矿床有关的热液活动主要有两大体系,即与海西期海底喷流沉积有关的热液体系和与矽卡岩矿化有关的燕山期岩浆热液体系。查明这两类热液体系的流体包裹体特征对区域找矿和矿床成因研究都有实际意义。在包裹体岩相学研究基础上,应用ICP_MS技术和热爆提取方法,研究了新桥、冬瓜山、峙门口、铜官山、朝山等矿床具代表性的热液石英中流体包裹体的微量元素、稀土元素特征。结果表明,两类热液体系在流体包裹体特征上有较大的区别,在流体的微量元素和稀土元素特征方面也很不相同。海底喷流沉积体系的热液石英中流体包裹体与岩浆热液体系的相比,稀土总量较高,LREE/HREE比值较大,δEu不明显,且Mo/(W+Sn)比值较高,反映流体中成矿物质的深源特征;Ga/Tl、Rb/Cs大,Zr/Hf低,也不同于岩浆热液体系。

References

[1]  [1]Bie F L, Li S R, Hou Z Q, et al. 2000. Polymetallic sulfide deposits at mordern sea floor: An overview[J]. J. Chengdu Univ. Technology, 27(4): 335~342 (in Chinese with English abstract).
[2]  [2]Chang Y F, Liu X P and Wu Y C. 1991. The copper-iron belt of the Middle and Lower reaches of the Yangtze River[M]. Beijing: Geol. Pub. House. 1~379(in Chinese).
[3]  [3]Chu G Z, Huang X C and Zhang C H. 1995. Discussion on the ore- control factors in Tongling area, Anhui[J]. Geology of Anhui, 5(1): 47~58 (in Chinese with English abstract).
[4]  [4]Eastoe C J and Gustin M M. 1996. Volcanogenic massive sulfide deposits and anoxia in the Phanerozoic oceans[J]. Ore Geology Review, 10: 179~197.
[5]  [5]Fu S C. 1999. The geological characteristics and metallogenic prediction in Chaoshan gold deposit, Tongling[J]. Contributions to Geology and Mineral Resources Research, 14(2): 69~74.
[6]  [6]Hou Z Q and Mo X X. 1996. The present and future investigation of the mordern sea floor hydrothermal processes and mineralization[J]. Earth Science Frontiers, 3(3-4): 263~273 (in Chinese with English abstract).
[7]  [7]Huang X C, Chu G Z, Zhou J, et al. 1994. A discussion on the resources of ore-forming material and ore-bearing fluid of the Tongling Area, Anhui[J]. Geology of Anhui, 4(3): 1~9 (in Chinese with English abstract).
[8]  [8]Huang Z C. 1999. Do there exist sea floor volcanic eruptive sediments in the Huanglong Formation, Tongling area, Anhui Province [J] ? J. China University, 5(1): 110~112 (in Chinese with English abstract).
[9]  [9]Kesler S E. 1997. Metallogenic evolution of convergent margins: Selected ore deposit models[J]. Ore Geology Review, 12: 153~171.
[10]  [10]Li T and Ni S B. 1990. The abundances of chemical elements in the earth and its crust[M]. Beijing: Geol. Pub. House. 1~136 (in Chinese with English abstract).
[11]  [11]Ling Q C and Liu C Q. 2002. The characteristics of ore-forming fluid of Dongguashan strata-bound skarn Cu deposit and its significance for deposit genesis[J]. J. Jilin University (Earth Edition), 32(3): 219~224 (in Chinese with English abstract).
[12]  [12]Meng L Y. 1996. Stable isotope compositions of intrusion-type massive sulfide deposits[J]. Chinese Science Bulletin, 41(9): 808~810 (in Chinese).
[13]  [13]Nutman A P and Ehlers K. 1998. Evidence for multiple palaeoproterozoic thermal events and magmatism adjacent to the Broken Hill Pb-Zn-Ag orebody, Australia[J]. Precambrian Research, 90: 203~238.
[14]  [14]Scott S D. 1987. Sea-floor polymetallic sulfides: Scientific curiosities or mines of the future [J] ? NATO ASI series C, 194: 277~300.
[15]  [15]Sedwick P and Stuben D. 1996, Chemistry of shallow submarine warm springs in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago, Italy[J]. Marine Chemistry, 53(1-2): 147~161.
[16]  [16]Su W C, Qi L, Hu R Z, et al. 1998. ICP-MS analyses of REE in inclusions fluids[J]. Chinese Science Bulletin, 43(10): 1094~1098 (in Chinese).
[17]  [17]Sun W K, Ding P F, Chen Y M, et al. 1994. Synthesize methods of geological mapping and investigation for mineral resources[M]. Beijing: Geol. Publ. House. 185~216 (in Chinese).
[18]  [18]Xie H G, Wang W B and Li W D. 1995. The genesis and metallogenetic epoch of Xinqiao Cu-S deposit, Anhui [J]. Volcanology and Mineral Resources, 16(2): 101~107 (in Chinese with English abstract).
[19]  [19]Xu J H, Xie Y L, Wang L J, et al. 2003. Trace elements in CO2 fluid inclusions in mantle lherzolite[J]. Acta Petrologica Sinica, 19(2): 307~313 (in Chinese with English abstract).
[20]  [20]Yang Z S, Hou Z Q, Meng Y F, et al. 2002. Regional-scale fluid system and its mineralization in Tongling ore-cluster-area, Anhui[J]. Mineral Deposits, 21(Supp.): 1080~1082 (in Chinese).
[21]  更多...
[22]  [21]Zhai Y S, Yao S Z, Lin X D, et al. 1992. The copper-iron (gold) belt of the ore-forming law of the lower middle reaches of the Changjiang River[M]. Beijing: Geol. Pub. House (in Chinese).
[23]  [22]Zeng P S, Pei R F, Hou Z Q, et al. 2002. SEDEX-type massive sulfide deposits in Tongling Block, Anhui, China[J]. Mineral Deposits, 21(Supp.): 532~535 (in Chinese).
[24]  [23]Zhou T F, Yue S C, Yuan F, et al. 2000a. Two series of copper-gold deposits in the middle and lower reaches of the Yangtze River area (MLYRA) and the hydrogen, oxygen, sulfur and lead isotopes of their ore-forming hydrothermal systems[J]. Science in China (Series D), 30(Supp.): 122~128(in Chinese).
[25]  [24]Zhou T F and Yue S C. 2000b. Forming conditions and mechanism for the fluid ore forming system of the copper, gold deposits in the Middle and Lower Reaches of the Yangtz River area[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 36(5): 698~708 (in Chinese with English abstract).
[26]  [25]Zhu H P and Wang L J. 2001. Analysis of gas composition in fluid inclusions by quadrupole mass spectrometry[J]. Science in China (Series D), 31(7): 586~590(in Chinese).
[27]  [26]别风雷, 李胜荣, 侯增谦, 等. 2000. 现代海底多金属硫化物矿床[J]. 成都理工学院学报, 27(4): 335~342.
[28]  [27]常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带[M]. 北京: 地质出版社. 1~379.
[29]  [28]储国正, 黄许陈, 张成火, 等. 1995. 安徽铜陵地区成矿控制因素的探讨[J]. 安徽地质, 5(1): 47~58.
[30]  [29]傅世昶. 1999. 铜陵朝山金矿床成矿地质特征和成矿预测[J]. 地质找矿论丛, 14(2): 69~74.
[31]  [30]侯增谦, 莫宣学. 1996. 现代海底热液成矿作用研究现状及发展方向[J]. 地学前缘, 3(3-4): 263~273.
[32]  [31]黄许陈, 储国正,周捷, 等. 1994. 安徽铜陵地区成矿物质和含矿流体来源问题的探讨[J]. 安徽地质, 4(3): 1~9.
[33]  [32]黄志诚. 1999. 安徽铜陵新桥黄龙组沉积期海底火山喷发-沉积质疑[J]. 高校地质学报, 5(1): 110~112.
[34]  [33]黎彤, 倪守斌. 1990. 地球和地壳的化学元素丰度[M]. 北京: 地质出版社.
[35]  凌其聪, 刘从强. 2002. 冬瓜山层控矽卡岩型铜矿床成矿流体特征及其成因意义[J]. 吉林大学学报(地球科学版), 32(3): 219-224.
[36]  [35]孟良义. 1996. 侵入型块状硫化物矿床的稳定同位素组成特征[J]. 科学通报, 41(9): 808~810.
[37]  [36]苏文超, 漆亮, 胡瑞忠, 等. 1998. 流体包裹体中稀土元素的ICP-MS分析研究[J]. 科学通报,43(10):1094~1098.
[38]  [37]孙文珂, 丁鹏飞, 陈员明, 等. 1994. 地质填图和矿产调查的综合方法[M. 北京:地质出版社. 185~216.
[39]  [38]谢华光, 王文斌, 李文达. 1995. 安徽新桥铜硫矿床成矿时代及成矿物质来源[J]. 火山地质与矿产,16(2):101~107.
[40]  [39]徐九华, 谢玉玲, 王丽君, 等. 2003. 地幔矿物中CO2流体包裹体的微量元素特征[J]. 岩石学报,19(2): 307~313.
[41]  [40]杨竹森,侯增谦,蒙义峰, 等. 2002. 安徽铜陵矿集区流体系统与成矿[J]. 矿床地质, 21(增刊): 1080~1082.
[42]  [41]翟裕生, 姚书振, 林新多. 1992. 长江中下游地区铁铜(金)成矿规律[M]. 北京: 地质出版社.
[43]  [42]曾普胜,裴荣富,侯增谦. 等. 2002. 安徽铜陵地块沉积-喷流块状硫化物矿床[J]. 矿床地质,21(增刊): 532~535.
[44]  [43]周涛发, 岳书昌, 袁峰. 等. 2000a. 长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究[J]. 中国科学(D辑), 30(增刊): 122~128.
[45]  [44]周涛发, 岳书昌. 2000b. 长江中下游铜、金矿床成矿流体系统的形成条件和机理研究[J]. 北京大学学报(自然科学版), 36(5): 698~708.
[46]  朱和平, 王莉娟. 2001. 四极质谱测定包裹体中的气相成分[J]. 中国科学(D辑), 31(7): 586-590.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133